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Abstract

In modeling of biological and engineering systems often requires use of concepts
of information theory, and in particular of entropy. The concept of residual entropy
is applicable to a system which has survived for some units of time. In this paper,
we propose a generalized residual entropy based on order statistics and obtain some
results on the stochastic comparisons of it.
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1 Introduction

Throughout this paper, X and Y will denote two random variables and the distribution
function, density function and hazard rate function ofX be denoted by F (t), f(t) and λF (t)
and those of Y be denoted by G(t), g(t) and λG(t), respectively. We will be particularly

interested in Xt, the remaining lifetime of a unit of age t ≥ 0. That is, Xt
d
= X − t|X > t

where
d
= stands for equality in distribution. For each t ≥ 0, the probability distribution

of Xt is absolutely continuous with distribution function Ft(x) = P (X − t ≤ x|X > t) =
[F (x+t)−F (t)]

F (t)
, x > 0, survival function F̄t(x) = 1 − Ft(x) =

F̄ (x+t)

F (t)
, x > 0, and probability

density function ft(x) =
f(x+t)

F (t)
, x > 0.

As is well known, an early definition of a measure of the entropy has been introduced
by Shannon (1948). Further, Nanda and Paul (2006) introduced a measure of residual
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entropy over (t,∞) based on the Tsallis entropy that is a generalisation of order β of the
Shannon entropy (Tsallis, 1988), given by

Hβ(X; t) =
1

β − 1

[
1−

∫ +∞
t fβ(x)dx

F̄ β(t)

]
, β ̸= 1, β > 0. (1)

Obviously Hβ(X; 0) results in Tsallis entropy and β −→ 1 gives Shannon entropy. In this
paper, we extend this generalized residual entropy based on order statistics and we derive
some stochastic comparisons based on the generalized residual entropy and order statistics
version of it.

2 Generalized residual entropy of order statistics

Suppose thatX1, X2, . . . , Xn are independent and identically distributed observations from
cdf F (t) and pdf f(t). The order statistics of the sample is defined by the arrangement
of X1, X2, . . . , Xn from the smallest to the largest, denoted as X1:n ≤ X2:n ≤ . . . ≤ Xn:n.
Generalized residual entropy associated with the ith order statistics Xi:n is given by

Hβ(Xi:n; t) =
1

β − 1

[
1−

∫∞
t fβi:n(x)dx

F
β
i:n(t)

]
, β ̸= 1, β > 0, (2)

where fi:n(x) and F i:n(x) are the density function and survival function of Xi:n, re-
spectively (see Davide and Nagaraja, 2003).

Now, using probability integral transformation U = F (X), where U is standard uni-
form distribution (2) can be expressed as

Hβ(Xi:n; t) =
1

β − 1

[
1−

BF (t)(β(i− 1) + 1, β(n− i) + 1)E[fβ−1(F−1(Yi))

B
β
F (t)(i, n− i+ 1)

]
,

where Yi ∼ BF (t)(β(i− 1) + 1, β(n− i) + 1).

3 Stochastic comparisons

Notation: a. The definitions of stochastic comparisons used in this section is available in
Shaked and Shanthikumar (1994).
b. The proof theorems stated in brief.

Definition 1. A random variable X is said to be smaller than Y in Tsallis entropy

ordering (denoted by X
GRE
⩽ Y ) if Hβ(X; t) ⩽ Hβ(Y ; t) for all t > 0.

It is well known that X
LR
⩽ Y ⇒ X

HR
⩽ Y ⇒ X

ST
⩽ Y and X

DIDP
⩽ Y ⇒ X

ST
⩽ Y and

X
LR
⩽ Y ⇒ X

ST
⩽ Y (Bickel and Lehmann, 1976; and Shaked and Shanthikumar, 1994).

We first prove the following preliminary results for generalized residual entropy.

Theorem 1. Let X and Y be two random variables, then X
DISP
≤ Y implies X

GRE
≤ Y .
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Proof. From (1), we have

Hβ(X; t) =
1

β − 1

[
1− B(1, β)

F
β
(t)

E(λβ−1
F (F−1(W )))

]
,

where W ∼ B(1, β). we also note that X
DISP
≤ Y if and only if λG(G

−1(u)) ≤ λF (F
−1(u))

for all u ∈ (0, 1) (see Shaked and Shanthikumar, 1994 ). First, we assume that β > 1, on

the other hand from Remark 3, X
DISP
≤ Y implies that X

ST
≤ Y . Hence, we find

Hβ(X; t)−Hβ(Y ; t) ≤ B(1, β)

β − 1

[
1

G
β
(t)

− 1

F
β
(t)

]
· E(λβ−1

F (F−1(W )))

≤ 0.

Thus, we obtain X
GRE
≤ Y . For 0 < β < 1 the proof is similar.

Theorem 2. Let X and Y be two random variables, at least one of them is DFR. Then

X
HR
≤ Y implies X

GRE
≤ Y .

Proof. First, we assume that 0 < β < 1 and X is DFR. Since X
HR
≤ Y implies that

Xt

ST
≤ Yt (see Shaked and Shanthikumar, 1994) and from (1), we have

Hβ(X; t) =
1

β − 1

[
1− EfXt,β

(λβ−1
F (t+Xt))

]
≤ 1

β − 1

[
1− EgYt,β (λ

β−1
F (t+ Yt))

]
≤ 1

β − 1

[
1− EgYt,β (λ

β−1
G (t+ Yt))

]
= Hβ(Y ; t),

where fXt,β =
−dF̄β

t (x)
dx . For β > 1 the proof is similar.

Now, by the fact that, X
DISP
⩽ Y implies that Xi:n

DISP
⩽ Yi:n (Shaked and Shanthiku-

mar, 1994) and by Theorem 1, we have the following result. Let X and Y be two random

variables. Then X
DISP
⩽ Y implies Xi:n

GRE
⩽ Yi:n.

Theorem 3. Suppose X has a DFR distribution. Then Xi:n

GRE
⩽ Xj:n, i < j.

Proof. Using the result of Chan et al. (1991), we have Xi:n

LR
⩽ Xj:n. By Remark 3, this

implies that Xi:n

HR
⩽ Xj:n. Since X has a DFR distribution , Xi:n has a DFR distribution,

(see Takahasi, 1988). So, by using Theorem 2 , we can conclude that Xi:n

GRE
⩽ Xj:n.

Theorem 4. Let X1, X2, . . . , Xn+1 be iid random variables with distribution function F (t).

Suppose X has a DFR distribution. Then, X1:n+1

GRE
⩽ X1:n and Xn:n

GRE
⩽ Xn+1:n+1 .

Proof. We use the fact that Xj:m

LR
⩽ Xi:n whenever j ⩽ i and m− j ⩾ n− i (Shaked and

Shanthikumar, 2007), and the method used in the proof of Theorem 3.

Archive of SID

www.SID.ir

http://www.sid.ir


First Seminar on Reliability Theory and its Applications 72

References

[1] Bickel, P. J., Lehmann, E. L. (1976), Descriptive Statistics for nonparametric models.
III. Dispersion. Ann. Statist. 4, 1139-1158.

[2] Chan, W., Proschan, F., Sethuraman, J. (1991), Convex ordering among functions
with applications to reliability and mathematical statistics. IMS Lecture Notes 16,
121-134.

[3] David, H. A., Nagaraja, H. N. (2003), Order Statistics. New York, Wiley.

[4] Nanda, A. K, Paul, P. (2006), Some results on generalized residual entropy. Information
Sciences 176, 27-47.

[5] Shaked, M., Shanthikumar, J. G. (1994), Stochastic Orders and Their Applications.
New York, Academic Press.

[6] Shaked, M., Shanthikumar, J. G. (2007), Stochastic Orders. Springer Verlag.

[7] Shannon, C. E. (1948), A mathematical theory of communication. Bell Syst. Tech. J.
27, 379-432.

[8] Takahasi, K. (1988), A note on hazard rates of order statistics. Comm. Statist. Theory
Methods. 17(12), 4133-4136.

[9] Tsallis, C. (1988), Possible generalization of Boltzmann-Gibbs Statistics. Statistical
Physics 52, 479-487.

Archive of SID

www.SID.ir

http://www.sid.ir

