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Abstract

In this paper, first we introduce the log-odds (LO) and log-odds ratio (LOR) func-
tions and their relations with reliability concepts such as hazard and reversed hazard
rate. Then, we proposed a new measure of skewness based on LO function in dis-
crete and continuous lifetime distributions and compare it with Pearson’s moment
coefficient of skewness and also Groeneveld-Meeden measure of skewness via some ex-
amples. Also some results due to bivariate log-odds are discussed.
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1 Introduction

Zimmer et al. [6] and Wang et al. [4, 5] introduced a new model for continuous time to
failure based on the log-odds rate (LOR) which is comparable to the model based on the
failure rate. Also Khorashadizadeh et al. [2] defined the discrete log-odds rate and have
obtained some characterization results for discrete lifetime distributions.

Suppose that X be a non-negative continuous random variable with probability density
function (pdf) fX(x), cumulative density function (cdf) FX(x) = P (X ≤ x) and reliability
function RX(x) = P (X > x), then the LOR function is defined by LORX(x) =

∂
∂xLOX(x),

where LOX(x) = ln FX(x)
RX(x) is the log-odds function. Hence,

LORX(x) =
fX(x)

FX(x)RX(x)
=
hX(x)

FX(x)
=

rX(x)

RX(x)
= hX(x) + rX(x),
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where hX(x) =
fX(x)
RX(x) is the hazard rate and rX(x) =

fX(x)
FX(x) is the reversed hazard rate.

The log-odds rate function characterizes the distribution uniquely [4].
Let T be a non-negative discrete random variable with probability mass function (pmf)

pT (t), cdf FT (t) = P (T ≤ t) and reliability function RT (t) = 1− F (t) = P (T > t). Then

the LO function is defined by LOT (t) = ln FT (t)
RT (t) . Khorashadizadeh et al. [2] have shown

that,

LOR∗
T (t) = LOT (t)− LOT (t− 1) = r∗T (t) + h∗T (t),

where r∗T (t) = ln FT (t)
FT (t−1) is the second reversed rate of failure and h∗T (t) = − ln RT (t)

RT (t−1)

is the second rate of failure. The LOR∗
T (t) function also characterizes the distribution

function uniquely [2].
By changing the variables, Y = lnX, (X = eY ), in continuous case the log-odds rate

in terms of lnx, we have LORY (y) = hY (y)
FY (y) = ey hX(ey)

FX(ey) for y ≥ 0. Wang et al. [4, 5]
proved the following relation, under mild condition, which is usually satisfied in reliability
practice,

ILOR in x⇒ IFR ⇒ ILOR in lnx.

The class of log-odds rate in terms of lnx is more interesting than log-odds rate in terms
of x, because the class of LOR in terms of ln t is weaker than the class of IFR.

Also, for discrete case in terms of K = lnT, (T = eK) it has been shown that [2],

LOR∗
K(k) =

∑t
i=1(r

∗
T (i) + h∗T (i))− ln FT (te−1)

RT (te−1)
+ a, where a = ln pT (0)

1−pT (0) .

In general for continuous lifetime distribution we have:

• F has constant LOR in x (lnx) if and only if F has a logistic (log logistic) distribu-
tion.

• If F has a Burr XII distribution with parameters α and β, then, for β = 1, it reduces
to log logistic distribution and has constant LOR in lnx, and for β > 1(β < 1), it is
ILOR (DLOR) in lnx.

Also, in discrete lifetime distribution we have,

• F is ILOR in terms of t (k = ln t) if and only if the LO function is convex with respect
to (w.r.t), t (k = ln t). Also, for dual class DLOR it is true for concave function.

• If T has a discrete standard logistic distribution, then LOT (t) = t+1 and by simple
transformation the discrete truncated logistics distribution has constant LOR in t.

• If T has a discrete Burr XII distribution with parameters α and θ, then in terms of
ln t, F is ILOR for θ < e−1, constant for θ = e−1, and DLOR for θ > e−1.

2 Measure of skewness based on LO

If we define SM =
∫
LO(x)dx, in continuous case and SM =

∑
LO(t) in discrete distri-

butions, then these measures may be measure of skewness.

Theorem 1. Let X be a continuous random variable with cdf, F (x) and log-odds function,

LO(x) = ln F (x)
1−F (x) , then if SM be finite such that, SM =

∫∞
−∞ LO(x)dx, we have, F (x)

is symmetric (positive or negative skewed) if and only if SM = (≥ or ≤)0.
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Proof:
Suppose X has a symmetric distribution, then we have, F (x) = F (2M − x), where M is

its median (or mean) and therefore LO(x) = −LO(2M−x). Thus, SM =
∫M
−∞ LO(x)dx+∫ +∞

M LO(x)dx, so, using the transformation x = 2M − t, we have SM = 0. Also, when
F is positive (negative) skewed, F (x) > (<)F (2M − x) and therefore LO(x) > (<) −
LO(2M − x), so the ”only if” part is proved. The ”if” can be proved on contrary.□

Similar results of Theorem 1 can be proved for discrete distribution, using SM =∑∞
−∞ LO(t). It should be noted that, since SM is just related to cdf, it estimating is

more easier than other measures of skewness like Pearson’s moment coefficient of skewness

[3], γ1 = E

[(
X−µ
σ

)3]
and also Groeneveld-Meeden measure of skewness [1] γ2 =

(µ−M)
E|X−M | ,

where M is median.

3 Bivariate case

Let LO1(x) and LO2(y) denote the marginal log odds functions of F1(x) and F2(y) re-
spectively. The bivariate log odds function can be defined as,

LO(x, y) = ln

(
F (x, y)

1− F (x, y)

)
.

We obtained the following properties for LO(x, y):

• The joint distribution can be determined uniquely by,

F (x, y) =
1

1 + e−LO(x,y)
.

• If X and Y be two independent random variables, then we have,

LO(x, y) = LO1(x) + LO2(y)− ln
(
1 + eLO1(x) + eLO2(y)

)
.

In similar way of Theorem 1, we can proved the following theorem.

Theorem 2. The bivariate distribution of the random variable (X,Y ), is radial symmetric
if and only if,

BSM =

∫
R

∫
R
LO∗(x, y)dxdy = 0,

where LO∗(x, y) = ln F (x,y)

F (x,y)
.

Future of the Work

Studying the estimation of the skewness based on data and also a similar definition of
skewness and symmetric in bivariate cases are the future of the work.
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