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Abstract

In this paper, first we introduce the log-odds (LO) and log-odds ratio (LOR) func-
tions and their relations with reliability concepts such as hazard and reversed hazard
rate. Then, we proposed a new measure of skewness based on LO function in dis-
crete and continuous lifetime distributions and compare it with Pearson’s moment
coefficient of skewness and also Groeneveld-Meeden measure of skewness via some ex-
amples. Also some results due to bivariate log-odds are discussed.

Keywords: Log-odds rate, Hazard rate, Reversed hazard rate, Second hazard rate,
Second reversed rate of failure.

1 Introduction

Zimmer et al. [6] and Wang et al. [4, 5] introduced a new model for continuous time to
failure based on the log-odds rate (LOR) which is comparable to the model based on the
failure rate. Also Khorashadizadeh et al. [2] defined the discrete log-odds rate and have
obtained some characterization results for discrete lifetime distributions.

Suppose that X be a non-negative continuous random variable with probability density
function (pdf) fx(z), cumulative density function (cdf) Fx(z) = P(X < x) and reliability
function Rx (xz) = P(X > z), then the LOR function is defined by LORx (z) = %LOX(SL'),

where LOx (x) = In g)}(( ((i)) is the log-odds function. Hence,

fx(x) — hx(z)  rx(z) = hx(z) +rx(x),

LORX(x)ZFX(x)RX(x) Fx(z)  Rx(z)
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where hx(x) = ]J;f( ((3;)) is the hazard rate and rx(z) = % is the reversed hazard rate.
The log-odds rate function characterizes the distribution uniquely [4].

Let T be a non-negative discrete random variable with probability mass function (pmf)
pr(t), cdf Fr(t) = P(T < t) and reliability function Rr(t) =1 — F(t) = P(T > t). Then
the LO function is defined by LO7(t) = In 27;((';)) Khorashadizadeh et al. [2] have shown
that,

LORY(t) = LOr(t) — LOp(t — 1) = r(t) + hp(t),

Fr(t) Ry (t)
FT(t_l) RT(t—l)
is the second rate of failure. The LORY}(¢) function also characterizes the distribution
function uniquely [2].

By changing the variables, Y = In X, (X = ¢), in continuous case the log-odds rate

in terms of Inz, we have LORy (y) = %Ezy/; = ey;‘,ﬁzzg for y > 0. Wang et al. [4, 5]

proved the following relation, under mild condition, which is usually satisfied in reliability
practice,

where 77.(t) = In is the second reversed rate of failure and h%.(t) = —In

ILOR in z=IFR=ILOR in Inz.

The class of log-odds rate in terms of In z is more interesting than log-odds rate in terms
of x, because the class of LOR in terms of Int is weaker than the class of IFR.
Also, for discrete case in terms of K = InT, (T = eX) it has been shown that [2],

LORjc (k) = S0 (i) + W5 (i) — In FEC3 + a, where a = In {2200

In general for continuous lifetime distribution we have:

e F has constant LOR in z (Inz) if and only if F' has a logistic (log logistic) distribu-
tion.

e If F' has a Burr XII distribution with parameters « and 3, then, for § = 1, it reduces
to log logistic distribution and has constant LOR in Inz, and for g > 1(8 < 1), it is
ILOR (DLOR) in Inz.

Also, in discrete lifetime distribution we have,

e FisILOR in terms of ¢ (k = Int) if and only if the LO function is convex with respect
to (w.r.t), t (k =Int). Also, for dual class DLOR it is true for concave function.

e If T has a discrete standard logistic distribution, then LO7(t) = t+ 1 and by simple
transformation the discrete truncated logistics distribution has constant LOR in ¢.

e If T has a discrete Burr XII distribution with parameters o and @, then in terms of
Int, Fis ILOR for § < e~ !, constant for § = e~!, and DLOR for § > e~ .

2 Measure of skewness based on LO

If we define SM = [ LO(z)dz, in continuous case and SM = Y LO(t) in discrete distri-
butions, then these measures may be measure of skewness.

Theorem 1. Let X be a continuous random variable with cdf, F(x) and log-odds function,

LO(z) =In %, then if SM be finite such that, SM = [*_LO(x)dx, we have, F(z)

is symmetric (positive or negative skewed) if and only if SM = (> or <)0.
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Proof:
Suppose X has a symmetric distribution, then we have, F(z) = F(2M — x), where M is
its median (or mean) and therefore LO(z) = —LO(2M —z). Thus, SM = fi\io LO(z)dz+
;fo LO(x)dz, so, using the transformation x = 2M — ¢, we have SM = 0. Also, when

F is positive (negative) skewed, F(z) > (<)F(2M — z) and therefore LO(z) > (<) —

LO(2M — x), so the ”only if” part is proved. The ”if” can be proved on contrary.[]
Similar results of Theorem 1 can be proved for discrete distribution, using SM =

Y2 LO(t). It should be noted that, since SM is just related to cdf, it estimating is

more easier than other measures of skewness like Pearson’s moment coefficient of skewness

3
B8], 1 =F (%) and also Groeneveld-Meeden measure of skewness [1] 72 = %,

where M is median.
3 Bivariate case

Let LO1(z) and LO3(y) denote the marginal log odds functions of Fj(z) and Fy(y) re-
spectively. The bivariate log odds function can be defined as,

F(z,y)
L =In———).
Oy =t <1 - F(%?J))
We obtained the following properties for LO(x,y):

e The joint distribution can be determined uniquely by,

1
F(l‘,y) = 1+ e LO@y)
e If X and Y be two independent random variables, then we have,

LO(z,y) = LO1(z) + LO2(y) — In (1 + O 4 eLOQ(y)> .

In similar way of Theorem 1, we can proved the following theorem.

Theorem 2. The bivariate distribution of the random variable (X,Y"), is radial symmetric
if and only if,

BSM://LO*(x,y)d:L"dy:(),
RJR

—

* — F(z,y
where LO*(x,y) = In Tlog)"

=

Future of the Work

Studying the estimation of the skewness based on data and also a similar definition of
skewness and symmetric in bivariate cases are the future of the work.
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