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Abstract

In recent years, a large number of research works are appeared in the literature
dealing with the properties and applications of the skew distributions. Skew distri-
butions are shown to be flexible models for describing different kind of data. In the
present study, we consider multivariate skew-normal distribution, and obtain some of
its properties. These properties help us to explore the stress-strength model based on
the multivariate skew-normal distribution.
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1 Introduction

Let ¢(-) and ®(-) denote the standard normal density and cumulative distribution func-
tions, respectively. Then, a random variable Z) is said to have a standard skew-normal
distribution with parameter A € R, denoted by Zy ~ SN(\), if its probability density
function (pdf) is given by (Azzalini 1985, 1986)

Psn (2:A) = 20(2)®(Az),  z€R. (1)

Azzalini and Dalla Valle (1996) presented the multivariate skew-normal distribution
with the following pdf

osn, (z;Q, ) = 2¢n(z;ﬂ)<l>(aTz), z ¢ R, (2)

where € is n x n dimensional dispersion matrix, a € R is vector of shape parameter and
¢n ;) denotes the pdf of the multivariate normal distribution with covariance matrix
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Q. We denote by Z ~ SN,, (2, &) and in special case that Q = I, (Identity matrix), we
denote by Z ~ SN, (a).
Azzalini and Dalla Valle (1996) presented representation of Z ~ SN, (€2, ) as fallow.

Let Y = (Y1,...,Y,)" and
Yo 1 of

where I' = [v; ;| is n x n dimensional correlation matrix. Now if define Z = (Z1,. .., Z)"
as

Z; =6 |Yo| + /1 — 62Y;, (4)

where §; = \;j/y/1+ A2, i=1,...,n, then Z; ~ SN ()\;) and Z ~ SN,, (2, @), where Q =
T T_ ANT'a1 _ T Iy 2 Y
AT+ A = 2L = (n ) andA_dmg{m 32, /1 5n}.

In matrix form, we can represent
Z=46|Yy| +AY. (5)

In case n = 2, Gupta and Brown (2001) evaluated P (Z; < Z3) as follow

1, dp — 0 1
P(Zl < Z2) = ;tan 1 <m> +§ (6)

where §; = \;/1/1+ A2, i =1,2. Let X; 4 wi+0oi;Z;,i=1,2, where Z1 and Z, represented

)

as in (4). Mehrali and Asadi (2010) evaluated P (X; < X2) as follow
P (X1 < X) = sy (k/V/1+6%0), (7)

where ®gy (+;8) is the cdf of SN (§), k = 22711 and § = 995282 where §;, i = 1,2 are
asin (6), 02 =a? (1 —67) +a3(1—63), a1 =1 and ay = — 2. Here we are interested in
evaluation of the following model of which presented by Kotz et al. (2003) as

P(X1<X2<"'<Xn) (8)

where X; 4 Wi +0iZ;, i =1,...,n, where Z = (Zl,...,Zn)T ~ SN, (2, a) with rep-
resentation 5. For this purpose we study some properties of multivariate skew-normal
distribution which help us to explore the stress-strength model based on the multivariate
skew-normal distribution.

2 Some properties of multivariate skew-normal distribution

In this section, we present some properties of multivariate skew-normal distribution. These
results help us to evaluate the stress-strength model based on the multivariate skew-normal
distribution.

Let Z)x ~ SN (A) independent of W ~ N, (0, X), where N, (0,3) denotes the multi-
variate normal distribution.
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a) If we define Y = HTW + kZ,, then Y ~ SN,, (2, @), where H is n x n symmetric

matrix, k € R", Q — HTSH + kk”, o = \/% and § = \/v/1+ A2,
1-62%k k
Let Zyx ~ SN (A). Then

E[®, (kZ) +u; X)) = gy, (u; Q,a),

where @, (+;X) is the cdf of N, (0,%), ®gn, (; Q,) is cdf of SN, (2, ), 2 is same as

lemma 2 part (c) and a = —%.
V1-82kT "k
Let define -
U, (kuX) = / O, (kz+u;X) ¢ (2) dz.
0
Then

1
U, (ku X) = §®SN7L (u; Q,a),

Q!
Vi—kTQ 'k’

Let Z ~ SN, (2, &) with representation 5 and D be an (n — 1) x n matrix, then

where € is same as lemma 2 part (c) and o’ = —

P(DZ <u) =5y, , (u;Q%a"),

T —1
where where Q* = DTQD and o*” = miDT, where 4 is same as 4.

V1i-6'Q7's

3 Stress-strength models in multivariate skew-normal dis-
tribution

Theorem 1. Let X; 4 wi +0:Z;, i =1,...,n, with representation as in (4). Then

P(Xl < Xo <o < Xn) = (I)SNn,l (ll; Q*,a*),

where u = (uq, . .. ,un_l)T, w; = fit1 — pi, Q° and o are same as lemma 2 part (a) with
aq b1 0
a9 bQ
D=
0 an-1 bp1
and a; = 0; and by = —0j41.

In special cases, we can find main results of Mehrali and Asadi (2010) and Gupta and
Brown (2001) as in 6 and 7.
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