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Abstract

In this paper, we discuss the Bayesian estimation problem for the Rayleigh distri-
bution based on upper record ranked set samples. The Bayes estimators are obtained
with respect to two different loss functions. We also obtain the Bayes confidence inter-
vals for the parameter of the Rayleigh distribution. Finally, we present a simulation
study for the purpose of numerical comparison.

Keywords: General entropy loss function, Maximum likelihood estimator, Simu-
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1 Introduction

The record ranked set sampling scheme has been introduced recently by [2]. Here, we
describe this sampling scheme, briefly, according to [2] as follows: Suppose that we have
m independent sequences of continuous random variables. If Ri,i denotes the i-th record
value in the i-th sequence for i = 1, ...,m, then i-th sequence sampling is terminated when
Ri,i is observed. Then, the only available observations, which are called record ranked
set sample (RRSS), include R1,1, · · · , Rm,m. These data can be minimal repair times of
some reliability systems as mentioned in [2]. The Rayleigh distribution plays a key role in
reliability analysis and therefore estimation of its parameter is important. In this paper,
we consider the point and interval estimation problem for the Rayleigh distribution based
on observed upper RRSSs. Main results are given in Section 2 and a simulation study is
presented in Section 3.
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2 Main Results

We say that X has a Rayleigh distribution if its pdf is given by

f(x) =
x

σ2
exp

(
− x2

2σ2

)
, x > 0, σ > 0. (1)

Let U = (U1,1, · · · , Um,m) be an upper RRSS from the Rayleigh distribution with pdf
given in (1), then the likelihood function for the parameter σ given u = (u1,1, · · · , um,m)
is (see [2])

L(σ|u) = =

m∏
i=1

{− log(1− F (ui,i))}i−1

(i− 1)!
f(ui,i)

=

exp

(
−

∑m
i=1 u

2
i,i

2σ2

)
σm(m+1)2m(m−1)/2

m∏
i=1

u2i−1
i,i

(i− 1)!
, (2)

where ui,i > 0 for i = 1, ...,m and σ > 0. The maximum likelihood estimator (MLE) of σ
is readily obtained to be

σ̂ML =

√∑m
i=1 U

2
i,i

m(m+ 1)
. (3)

For the Bayesian estimation, we take the conjugate prior

π(σ) ∝ σ−2b−1 exp(−a/2σ2), σ > 0, (4)

where a and b are positive hyperparameters. Note that for a = b = 0, we arrive at the
non-informative prior. Now, from Equations (2) and (4), the posterior distribution of σ,
given u, becomes

π(σ|u) = 2wb+m(m+1)/2 exp(−w/σ2)
Γ
(
b+m(m+ 1)/2

)
σ2b+m(m+1)+1

, (5)

where Γ(·) is the complete gamma function, W =
a+

∑m
i=1 U

2
i,i

2
, and w is the observed

value of W .

Let σ̂ be an estimator of σ, then the squared error loss (SEL) function is defined as
L1(σ, σ̂) = (σ̂ − σ)2. The Bayes estimator of σ under SEL function, based on RRSS, is
the mean of the posterior density (5)

σ̂BS =
Γ
(
b+ [m(m+ 1)− 1]/2

)√
W

Γ
(
b+m(m+ 1)/2

) .

The SEL function is symmetric namely it assigns equivalent dimensions to underestimation
and overestimation. But in many real situations, overestimation and underestimation have
different consequences. Therefore, we consider a useful asymmetric loss function, called
the general entropy loss (GEL) function, introduced by [1], which is defined as

L2(σ, σ̂) = (σ̂/σ)q − q log(σ̂/σ)− 1, q ̸= 0.
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The sign and magnitude of parameter q must be determined properly. The positive values
of q cause the overestimation to get more serious than underestimation and vice versa.
The Bayes estimator of σ under GEL function, based on RRSS, is

σ̂BG =
[
E(σ−q|U)

]−1/q
=

[
Γ
(
b+ [m(m+ 1) + q]/2

)
Γ
(
b+m(m+ 1)/2

) ]−1/q√
W, (6)

provided that b+ [m(m+ 1) + q]/2 > 0.
Next, we want to find Bayesian confidence intervals for σ. From (5), we see that

Q1 = w/σ2|u ∼ G
(
b+m(m+1)/2, 1

)
, where G(λ1, λ2) stands for the gamma distribution

with the shape parameter λ1 and scale parameter λ2. Let ξγ(λ1, λ2) denote the upper
γ-th quantile of G(λ1, λ2), that is P (V > ξγ(λ1, λ2)) = γ where V ∼ G(λ1, λ2). Then, a
100(1−α)% two-sided equi-tailed Bayesian confidence interval (TEB CI) for σ is given by(√

W

ξα/2(b+m(m+ 1)/2, 1)
,

√
W

ξ1−α/2(b+m(m+ 1)/2, 1)

)
.

We also derive the highest posterior density intervals (HPDIs) for σ. For unimodal poste-
rior distributions, the HPDIs are the same as their corresponding shortest credible inter-
vals. Since the posterior pdf of σ given in (5) is unimodal, it can be easily verified that a
100(1− α)% HPDI for σ, given W = w, possesses the form (σL, σU ) such that

Γ(A(b,m), w/σ2U , w/σ
2
L)

Γ(b+m(m+ 1)/2)
= 1− α, and

(
σU
σL

)2A(b,m)+1

= ew(σ
−2
L −σ−2

U ),

where A(b,m) = b + m(m + 1)/2 and Γ(ν, u1, u2) =
∫ u2
u1
tν−1e−tdt is the generalized

incomplete gamma function.

3 A simulation study

In this section, we performed a simulation in order to compare the point and interval
estimators. In this simulation, we randomly generated M = 10000 upper RRSSs of size
m = 6 from the Rayleigh distribution with σ = 1. We considered 3 cases for the prior
distribution described as follows:
Case I: Non-informative prior with a = b = 0.
Case II: Informative prior with prior information E(σ) = 1 =true value, and V ar(σ) = 2
and from (4), we have a = 0.9115 and b = 1.1519.
Case III: Informative prior with prior information E(σ) = 1 and V ar(σ) = 0.5 which
corresponds to a = 1.6989 and b = 1.5663.
We then obtained the MLEs and the Bayes estimators of σ under SEL and GEL (for
q = −2, 2) functions, which are denoted by σ̂ML(i), σ̂BS(i) and σ̂BG(i), in the i-th
iteration, respectively. The estimated risks (ERs) of the estimators were obtained using
the relations ERS(σ̂BS) =

1
M

∑M
i=1[σ̂BS(i)−σ]2, and ERG(σ̂BG) =

1
M

∑M
i=1[(σ̂BG(i)/σ)

q−
q log(σ̂BG(i)/σ)− 1]. We calculated the ER of each Bayes estimator according to its own
loss function. For the MLEs, we calculated both kinds of ERs, i.e. ERS and ERG to
compare them with their corresponding Bayes estimators. We also obtained 95% TEB
CIs as well as 95% HPDIs for σ and calculated the coverage probabilities (CPs) and the
average widths (AWs) of the CIs over 10000 replications. The results are presented in
Table 1.
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From Table 1, we observe that the ERs of the Bayes estimators, especially the ones
obtained under the informative cases, are smaller than the ERs of the corresponding MLEs
which reveals the superiority of the Bayesian methods as compared with the likelihood
ones. Moreover, Case III contains the smallest ERs and the shortest CIs which is quite
reasonable as Case III has the smallest prior variance and therefore is the most informative
case. We also observe that the HPDIs are shorter than their corresponding TEB CIs.

Table 1: The results of the simulation.
ERS ERG TEB CI HPDI

q = −2 q = 2 AW CP AW CP
MLE 0.0119 0.0260 0.0240 – – – –
Case I 0.0124 0.0248 0.0240 0.4437 0.9500 0.4364 0.9493
Case II 0.0114 0.0242 0.0235 0.4243 0.9484 0.4177 0.9426
Case III 0.0110 0.0232 0.0227 0.4201 0.9510 0.4137 0.9446
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