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Abstract

Classical estimation procedures of the stress-strength parameter R = Pr(X > Y )
are based on precise data. However, in real world situations, some collected data
might be imprecise and are represented in the form of fuzzy numbers. In this paper,
we obtain the maximum likelihood estimation of the parameter R when X and Y are
independent Lindley random variables, and the available data are reported in the form
of fuzzy numbers. A Monte Carlo simulation study is carried out in order to assess
the accuracy of the proposed method.

Keywords: Stress-Strength model, Fuzzy data analysis, Maximum likelihood esti-
mation.

1 Introduction

Extensive research has been conducted on the stressstrength model. This model involves
two independent random variables X and Y , and the parameter of interest is the prob-
ability R = P (X > Y ). A comprehensive account of this topic is given by Kotz et al.
(2003). The developments in this field covered a variety of data types including complete
data, censored data as well as data with explanatory variables. However, in real world
situations, the results of an experimental performance can not always be recorded or mea-
sured precisely, but each observable event may only be identified with a fuzzy subset of
the sample space. Our aim in this paper is to develop an inferential procedure for the
stress-strength model in the situation where the stress measurements and the strength
measurements are both in terms of fuzzy numbers. We will construct maximum likelihood
estimation for the stress-strength reliability assuming two independent samples from Lind-
ley distribution. In Section 2, We first introduce a generalized likelihood function based
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on fuzzy data and then discuss the maximum likelihood estimation of the parameter R.
A Monte Carlo simulation study is presented in Section 3, in order to assess the accuracy
of the proposed method. For a review about the main definitions of fuzzy sets see Pak et
al. (2014) and the references therein.

We use the following notation. A Lindley distribution with the parameter θ, will be
denoted by Lindley(θ) and the corresponding probability density function is as follows;

f(x; θ) =
θ2

1 + θ
(1 + x)e−θx; x > 0; θ > 0. (1)

2 Maximum likelihood estimation

Let the strength X and stress Y follow Lindley(θ1) and Lindley(θ2), respectively, and
they are independent. Then, it can be easily shown that

R = Pr(Y < X)

= 1− θ21[θ
2
1(θ1 + 1) + θ2(θ1 + 1)(θ1 + 3) + θ22(2θ2 + 3) + θ22]

(θ1 + 1)(θ2 + 1)(θ1 + θ2)3
. (2)

Suppose that partial information about the stress and strength are available in the
form of fuzzy numbers x̃ and ỹ with the Borel measurable membership functions µx̃(x)
and µỹ(y). Then, the corresponding observed-data log likelihood function can be obtained
as:

LO(x̃, ỹ; θ1, θ2) = n log

(
θ21

1 + θ1

)
+

n∑
i=1

log

∫
(1 + x)e−θ1xµx̃i(x)dx

+ m log

(
θ22

1 + θ2

)
+

m∑
j=1

log

∫
(1 + y)e−θ2yµỹj (y)dy.

To compute the maximum likelihood estimate (MLE) of R, we need to compute the
MLEs of θ1 and θ2, say θ̂1 and θ̂2, respectively. The MLE R̂ of R can then be obtained
by substituting θ̂k in place of θk, in (2.1) for k = 1 and 2.

Since the observed fuzzy data x̃ and ỹ can be viewed as incomplete specifications of the
complete data vectors x and y, respectively, the EM algorithm is applicable to obtain the
MLEs of the unknown parameters.

To perform the E-step of the algorithm, we need to compute the conditional expectation
of the complete-data log-likelihood function conditionally on the observed data x̃ and ỹ
as follows:

n log

(
θ21

1 + θ1

)
+m log

(
θ22

1 + θ2

)
− θ1

n∑
i=1

E
θ
(h)
1

(Xi | x̃i)− θ2

m∑
j=1

E
θ
(h)
2

(Yj | ỹj) (3)

where

E
θ
(h)
1

(Xi | x̃i) =
∫
x(1 + x)e−θ

(h)
1 xµx̃i(x)dx∫

(1 + x)e−θ
(h)
1 xµx̃i(x)dx

, i = 1, ..., n,
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E
θ
(h)
2

(Yj | ỹj) =
∫
y(1 + y)e−θ

(h)
2 yµỹj (y)dy∫

(1 + y)e−θ
(h)
2 yµỹj (y)dy

, j = 1, ...,m.

The M-step of the algorithm involves maximizing (2.2) with respect to θ1 and θ2, which
yields

θ
(h+1)
1 =

1

2
(αh − 1) +

[
(1− αh)

2 + 8αh
]
,

θ
(h+1)
2 =

1

2
(βh − 1) +

[
(1− βh)

2 + 8βh
]

where

αh =
n

n∑
i=1

E
θ
(h)
1

(Xi | x̃i)
, βh =

m
m∑
j=1

E
θ
(h)
2

(Yj | ỹj)
.

The MLEs of θ1 and θ2 can be obtained by repeating the E-step and M-step until conver-
gence occurs.
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Figure 1: Fuzzy information system used to encode the simulated data

3 Simulation study

In order to assess the accuracy of the proposed method, we have carried out a Monte Carlo
simulation study. First, for different sample sizes and a set of parameter values, namely
(θ1, θ2) = (1.0, 2.0), we have generated random samples from Lindley distribution. Then,
each realization of the random samples was fuzzified using the fuzzy information system
shown in Fig.1 and the estimate of the parameters θ1, θ2 and R for the fuzzy samples
were computed using the maximum likelihood procedure. The average values (AV) and
mean squared errors (MSE) of the ML estimates over 1000 replications are presented in
Table 1. From the experiments, we found that the performance of the ML estimates are
quite satisfactory and as the sample size increases, the MSEs of the estimates decrease as
expected.
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Table 1: AVs and MSEs of the ML estimates θ̂1, θ̂2 and R̂ for different sample sizes.

(n,m) θ̂1 θ̂2 R̂
AV MSE AV MSE AV MSE

(20,20) 1.1931 0.0827 2.2180 0.1721 0.7025 0.0136
(20,30) 1.1827 0.0640 2.2039 0.1432 0.7003 0.0113
(30,20) 1.1838 0.0644 2.2057 0.1454 0.6891 0.0081
(30,30) 1.1210 0.0492 2.1863 0.1197 0.6678 0.0069
(30,50) 1.0731 0.0313 2.1625 0.0893 0.6653 0.0052
(50,30) 1.0690 0.0307 2.1597 0.0822 0.6672 0.0057
(50,50) 1.0248 0.0238 2.1139 0.0517 0.6319 0.0031
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