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Abstract—In this paper, membership function shapes and 

types and the fuzzy rules of fuzzy systems are adjusted by 

using a Intelligent Gravitational Search Algorithm (IGSA) in 

order to obtain an optimal fuzzy system. The advantages of 

this method in classifying various data sets are illustrated. 

Possible extensions of this technique are briefly discussed.  
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I.  INTRODUCTION  

The most important issue in designing a fuzzy system is 
to determine appropriate fuzzy variables and their 
membership functions, optimum fuzzy rules containing 
Suitabl eantecedents and consequents, and proper fuzzy 
operators. In fact, these are the structural fuzzy parameters of 
any fuzzy system which a designer tries to obtain their 
optimal set up. In other words, one of the most important 
considerations in designing any fuzzy system is the 
generation of the optimal fuzzy rules as well as the 
membership functions for each fuzzy set. In most existing 
applications, the fuzzy rules are generated by experts in the 
area, especially for control problems with only a few inputs. 
With an increasing number of variables, the possible number 
of rules for the system increases exponentially, which makes 
it difficult for experts to define a complete rule set for good 
system performance. An automated way to design fuzzy 
systems might be preferable. In essence, the design of a 
fuzzy system can be formulated as a search problem in high 
dimensional space where each point represents a rule set, 
membership functions, and the corresponding system's 
behavior. Given some performance criteria, the performance 
of the system forms a hyper-surface in the space. Developing 
the optimal fuzzy system design is equivalent to finding the 
optimal location of this hyper-surface. These characteristics 
seem to make the swarm intelligence optimization 
algorithms good candidates for searching the hyper-surface 
for optimum point. In this paper the employment of 
Gravitational Search Algorithms (GSA) for optimizing fuzzy 
systems’ parameters is investigated. Already, the usage of 
heuristic methods and fuzzy logic with each other as more 
powerful algorithms were reported [2–6,8]. For an 
application in data mining and pattern recognition tasks, 
designing an optimum fuzzy classifier by using GSA is 
introduced.  Also other researches in this area are reported. 
GA’s are commonly used evolutionary algorithms that 

provide a way to search poorly understood irregular spaces. 
One of the key issues in the evolutionary design of fuzzy 
systems using GA’s is their genotype representation; that is, 
what is encoded into the chromosomes. Thrift [14] and 
Hwang and Thompson [15] encode all the rules into the 
chromosome while fixing the membership functions. Using 
several critical points to represent each membership function 
while using all the possible rules, Karr and Gentry [18] use 
GA’s to evolve these critical points; that is, to adjust the 
membership functions. Since in a fuzzy system the 
membership functions and rule set are codependent, they 
should be designed or evolved at the same time. Homaifar 
and McCormick [17] use GA’s to tune the membership 
functions and evolve the rule set at the same time. Similar to 
[17], Lee and Takagi [19] also encode membership functions 
and all the rules into the chromosome, but have a different 
way to encode the triangular membership functions. Yuhui 
Shi [1] implements a fuzzy classifier whose rules and 
membership functions are optimized by genetic algorithm 
(namely GAF-classifier) are provided. The optimization of 
parameters of fuzzy systems by using the swarm intelligence 
algorithms has been implemented in different applications. 
Tao et al [9] proposed a fuzzy entropy method incorporating 
with the ant colony optimization (ACO). The ACO was used 
to obtain the optimal parameters of fuzzy entropy method. 
They applied their method to the segmentation of infrared 
objects and they illustrated that the fuzzy entropy method, 
incorporating with the ACO, provides improved search 
performance and requires significantly reduced computations 
in comparison to GA. Therefore, it may be suitable for real-
time vision applications, such as automatic target recognition 
(ATR). Han and Shi [10] utilized ACO technique for fuzzy 
clustering in image segmentation. Chatterjee and Siarry [11] 
employed the PSO algorithm to simultaneously tune the 
shape of the fuzzy membership functions as well as the rule 
consequences for the entire neuro-fuzzy rule based classifier. 
Chen and Zhao [12] proposed a data-driven fuzzy clustering 
method based on maximum entropy principle (MEP) and 
PSO. In their algorithm, the memberships of output variables 
are inferred by maximum entropy principle, and the centers 
of fuzzy rule base are optimized by PSO. In [13], fuzzy c-
mean clustering, particle swarm optimization and recursive 
least-squares are combined to generate fuzzy modeling 
system. Tao et al. [25] adopted ACO to propose a chaotic 
optimization method, called CAS (chaotic ant swarm) for 
solving the problem of designing a fuzzy system to identify 
dynamical systems. The position vector of each ant in the 
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CAS algorithm corresponds to the parameter vector of the 
selected fuzzy system. At each learning time step, the CAS 
algorithm is iterated to give the optimal parameters of fuzzy 
systems based on the fitness theory. Then the corresponding 
CAS-designed fuzzy system is built and applied to the 
identification of the unknown nonlinear dynamical systems. 
This paper is organized as follows: 

Section II explains the proposed intelligent GSA. We 
discuss about fuzzy system in Section III and we implement 
an optimized fuzzy system using GSA in section IV 
respectively. In Section V, the experimental results are 
presented on different data sets to evaluate the performance 
of the proposed IGSF-classifier. In particular, in this Section 
the comparative results are provided for PSF-classifier (a 
fuzzy classifier based on the particle swarm optimization) 
[7], and GAF-classifier (a fuzzy classifier based on the 
genetic algorithm) [1]. Finally, Section VI concludes the 
paper. 

II. INTELLIGENT GRAVITATIONAL SEARCH ALGORITHM 

In standard GSA the swarm size was considered a 
constant value (50 for their experiments), and the effective 
number of objects was set to the swarm size and was 
decreased to one lineally. Also the gravitational coefficient 
was decreased by an exponential function as Eq. (1)  

 

)
T

t
 exp(- )( 0 GtG   (1) 

 
Linearly, exponentially, or other schedules for  

mathematically modeling the search process of a swarm 
intelligence algorithm may be useful for tackling some 
benchmark functions (as it was shown in [20]); but for 
solving complex engineering problems, this planning is not 
practical, generally. Because in complex optimization 
problems, like data mining, the search process of GSA is 
non-linear and very complicated and it is hard if not 
impossible, to mathematically model the search process. 
Thus adjusting the GSA parameters by predefined 
mathematical models reduces the performance of GSA and it 
may lead to premature convergence, local capturing, poor 
exploitation, poor exploration, etc.  

On the other hand, some understanding of the GSA 
search process has been accumulated, and linguistic 
description of its search process is available. This 
understanding and linguistic description make a fuzzy 
system a good candidate for dynamically controlling the 
GSA parameters.  

In this Section a fuzzy system is introduced to control the 

effective number of objects ( Kbest ) and gravitational 

coefficient to improve the efficiency and performance of 
GSA The proposed optimizing method is called Fuzzy-GSA  
and is utilized to design a fuzzy classifier in the next Section. 
This version of GSA is just similar to Fuzzy-GSA that has 
been introduced by the authors in [26]. It is adopted because 
our experiences on its powerfulness and effectiveness in 
pattern recognition tasks. 

A. Linguistic Description on the Effect of GSA Parameters 

on Its Search Process 

1) Number of Effective Objects (Kbest) 
Number of effective objects (Kbest) has a significant 

effect on the search process of GSA. A large value of Kbest 
means considering more objects which interacting with each 
other by gravitational force. It means more movement, more 
computational costs, and lower convergence rate; whereas a 
small value of Kbest causes a local minimum capturing and 
reduces the performance of GSA. In fact by tracking the 
search process of GSA, when GSA has no effective 
improvement in the best fitness, Kbest should be increased to 
escape from the local regions in the solution space. It means 
confirming the exploitation. On the contrary by receiving 
better regions, the value of Kbest should be decreased to 
improve the convergence rate and fortify the exploration 
instead of exploitation. Obviously, in each complex 
engineering and practical problem, the reduction and 
increasing schemes of Kbest are different. Thus, the idea of 
intelligently controlling the Kbets by effective fuzzy rules 
can simulate many of these schemes without any try and 
error efforts for mathematically modeling the best model of 
changing the value of Kbest. 

 
2) Gravitational Coefficient 
The application of gravitational coefficient (G) allows 

control over the dynamical characteristics of the particle 
swarm, including its exploration versus exploitation 
propensities. In fact, gravitational coefficient prevents a 
buildup of velocity because of the effect of object inertia. 
Without the gravitational coefficient, objects with buildup 
velocities might explore the search space, but lose the ability 
to fine-tune a result. On the other hand, preventing the 
objects speed too much might damage the search space 
exploration. Thus the value of gravitational coefficient 
affects the global versus local abilities of the GSA. Also it 
can be concluded from Eq. (2) to (6) that G determines the 
value of attraction of objects by the Kbest positions found in 
the present iteration. This means that the convergence 
characteristics of GSA can be controlled by gravitational 
coefficient. As the fitness value of the objects system 
becomes better and better, the part of search space, which the 
objects explore should be smaller and smaller. It means that 
G should be decreased to emphasize the local search instead 
of global. A less improvement in the objects fitness causes a 
bigger search space for the exploration. This means an 
increasing should be happen on the value of G, to emphasize 
the global search instead of local. Since the search process is 
randomized based, it might be needed to increase the 
gravitational coefficient in medium values of iterations, and 
vice versa. Thus an exponential model with reduction 
property for all iterations (as it was proposed in [20]) is not a 
good schedule for solving complex problems. 

B. Fuzzy Controller in Fuzzy-GSA 

The fuzzy controller is constructed with four inputs and two 

outputs. The inputs are as follows: 
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• )(tfbest : The maximum fitness value among the all 

objects in iteration t.  

• UN : The number of iterations, which bestf is 

unchanged. 

• VAR_fit(t): The variance of the obtained fitnesses 

in iteration  t. 

UN is introduced as an input of fuzzy controller to know 

when the object system converged (or captured) to a local 

optimum and VAR_fit(t) is introduced as a metric of objects 

diversity. Obviously large values of VAR_fit(t) show large 

objects diversity and vice versa.  

Two outputs are: 

• Kbest : The number of effective masses (objects). 

• G : The gravitational coefficient. 

The following eight fuzzy rules can be extracted from the 

linguistic descriptions in previous subsection, to control 

intelligently the search process of GSA: 

1. IF UN  is high, and )(tfbest is low, THEN Kbest is 

high and G  is high. 

2. IF VAR_fit(t) is medium and UN  is low and 

)(tfbest is medium, THEN Kbest  is low and G is 

medium. 

3. IF )(tfbest is medium and UN is medium, THEN 

Kbest is medium and G  is medium. 

4. IF UN  is high and )(tfbest  is high, THEN Kbest is 

low and G is low.  

5. IF )(tfbest  is low and VAR_fit(t) is low, THEN 

Kbest is high and G is high. 

6. IF )(tfbest is medium and VAR_fit(t) is high, THEN 

Kbest is high and G is medium. 

7. IF )(tfbest  is high and VAR_fit(t) is medium, THEN 

Kbest is low and G  is medium. 

8. IF )(tfbest  is high and VAR_fit(t) is high, THEN 

Kbest is low and and G is high. 

The fuzzy controller has been designed with above fuzzy 

rules and its normalized inputs and outputs membership 

functions are shown in figure 1 and figure 2, respectively. 
It must be mentioned that different kinds of inputs, 

outputs, membership function shapes, membership function 
locations and fuzzy rules may be introduced and even these 
parameters can be optimized by another optimization 
algorithm. In this here the membership functions and their 
locations are selected and tuned manually. The block 
diagram of Fuzzy-GSA is shown in figure 3. 

III. FUZZY LOGIC AND CLASSIFICATION 

Classification is a supervised learning technique that 
takes labeled data samples and generates a model (classifier) 
that classifies new data samples into different predefined 

 

 

Figure 1.  Normalized inputs membership functions 

 

Figure 2.  Normalized outputs membership functions 

 

Figure 3.  Block diagram of Fuzzy GSA 

groups or classes. This classification problem can be 
easily solved by fuzzy logic with interpretable if-then rules 
and membership function Fuzzy logic provides a general 
concept for description and measurement. Most fuzzy logic 
systems encode human reasoning into a program to make 
decisions or control a system. Fuzzy logic compromises 
fussy sets, which are a way of representing non-statistical 
uncertainty and approximate reasoning, which includes the 
operations used to make inferences in fuzzy logic. Fuzzy 
rule-based systems have been successfully applied to various 
engineering problems (e.g. pattern recognition [1], [21], and 
control problems [22]). In this section the basic concepts and 
definitions of fuzzy systems are presented. 
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A. Membership Functions  

Unlike traditional two-valued logic, in fuzzy logic, fuzzy 
set membership occurs for a fuzzy variable by degree over 
the range [0,1]. Which is represented by a membership 
function? It is this function that is the fuzzy set. The function 
can be linear or nonlinear. Commonly used are the left-
trapezoidal, right-trapezoidal, triangle, Gaussian, and 
sigmoid functions, as shown in figure 4. Definitions of these 
membership functions as used in this chapter are as follows.  

a) Left-trapezoidal membership function: 

 
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0                     
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b) Right-trapezoidal membership function 
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c) Triangle membership function: 
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d) Gaussian membership function 

 
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e) Sigmoid membership function 

 
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Sig MF x where y
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f) Reverse-sigmoid membership function 

  1 ( )Rsig MF x Sig MF x     

 
From the definitions, it can be seen that each 

abovementioned membership function is determined by two 
values (the start-point a and the end-point b). 

B. Fuzzy Rules 

The general form of a Mamdani-type fuzzy rule in a 
fuzzy system is  

If    is  AND  is  is   THEN   is 
1 1 2 2 1 1

  , ,   is 
2 2

x A x A x A y C
n n

y is C y C
n k





 Where each iy is the consequent (output) variable whose 

value is inferred, each ix  is an antecedent (input) variable  

and each iA  and iC is a fuzzy represented by a membership 

function. The antecedents are combined by AND fuzzy 

operator. AND'ed antecedents are usually calculated by T-

norm [23]. Other fuzzy operators are defined (e.g. OR, 

Aggregation operator, and Implication operator). In our  

 

Figure 4.  Left-trapezoidal, right-trapezoidal, triangle, Gaussian, and 

sigmoid membership functions 

application, a fuzzy system is utilized as a fuzzy classifier. In 

fuzzy classifiers the most utilized operator for feature vectors 

are AND operator. All the fuzzy rules in a fuzzy system are 

fired in parallel. The fuzzy system works as follows: 

 
1. Determine the fuzzy membership values activated 

by the inputs. 
2. Determine which rules are fired in the rule set. 
3. Combine the membership values for each activated 

rule using the AND operator. 
4. Trace rule activation membership values back 

through the appropriate output fuzzy membership 
functions. 

5. Utilize defuzzification to determine the value for 
each output variable. 

6. Make decision according to the output values. 
 

Determination of the fuzzy membership values of the 
inputs is often called fuzzification. Each input may activate 
one or more fuzzy sets of that input variable according to the 
definitions of the fuzzy membership functions. Only the 
rules with at least one antecedent set activated are said to be 
fired by the inputs. The AND operator is typically used to 
combine the membership values for each fired rule to 
generate the membership values for the fuzzy sets of output 
variables in the consequent part of the rule. Since there may 
be several rules fired in the rule sets, for some fuzzy sets of 
the output variables there may be different membership 
values obtained from different fired rules. There are many 
ways to combine these values. One commonly used way is to 
use the OR operator, that is to take the maximum value as 
the membership value of the fuzzy set. Next, a 
defuzzification method is used to produce a single scalar 
value for each output variable. A common way to do the 
defuzzification is called centroid method [23]. Then 
according to the output values, some decisions can be made 
to solve the problem. For example, for M-class classification 
problem, the range of the output variable of a fuzzy classifier 
can be divided into M evenly distributed parts, then the input 
pattern belongs to class I if the inferred output value is 
located inside the ith part. This is the approach taken for 
constructing the fuzzy classifiers in this here. 
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IV. DESIGNING A FUZZY CLASSIFIER USING 

INTELLIGENCE GRAVITATIONAL SEARCH ALGORITHM 

Let us assume that our pattern classification problem is 
an M-class problem in the n- dimensional feature space with 
continuous attributes. The general form of a fuzzy classifier 
rule is as follows: 

If    is  AND  is  is   THEN   is 
1 1 2 2

x A x A x A y C
n n

  

where each y  is the output of the rule C is a feature 

vector (input) each iA and C is a fuzzy represented by a 

membership function. As mentioned in the previous section, 
the range of the output variable of the rule is divided into M 
evenly distributed parts, then the input pattern belongs to 
class i if the inferred output value is located inside the ith 
part. For example, for three classification problem, the 
output range is divided into three fuzzy regions of Low, 
Medium, and High, corresponding to class 1 to 3 
respectively. The major aim in this section is obtaining the 
optimum fuzzy rule set and membership functions in a fuzzy 
classifier, using GSA. The designed fuzzy classifier by 
employing GSA is called GSF-classifier. 

A. Masses Representation 

The first important consideration is mass representation 

strategy, which is how to encode the fuzzy classifier into the 

mass form. To completely represent a fuzzy classifier 

(system), each mass must contain all the needed information 

about the rule set and the membership functions. For more 

explanation, suppose a classification problem for four 

feature vector dimensions and three reference classes. Each 

variable has three fuzzy sets representing the linguistic 

descriptions: Low, Medium, and High. In this case, we can 

use the integers 1-3 to represent each of these three terms, 

use the integer 0 to represent the absence of a term, and use 

a minus sign '-' to encode the term "not". For example, the 

rule "IF input-1 is not Low AND input-2 is not Medium 

AND input-4 is High, THEN output is high" can be encoded 

as "-1-2033". The total of six types of membership functions 

(defined in the subsection 4-1) are used as the membership 

functions candidates; each is represented by an integer from 

1 to 6. A membership function in our problems is 

completely determined by three values: the start–point a, the 

end-point b, and the function type value. Here, real values 

are chosen to represent the start-point and end-point. 

Assume for the variable x that its dynamic range is [A,B] 

and that it has n fuzzy sets. If the fuzzy membership 

functions are uniformly distributed over the range with half-

way overlap [1], then the center point n)1,...,(  iCi of the ith 

membership function is located at  

 

n     1,...,        *  istepiSCi  

where  

1




n

BA
step  

   We constraint the start–point ia of the ith membership 

function to vary only between 1ic  and ic , and the end-

point ib of the ith membership function can vary only 

between ic and 1ic . Assume for our example fuzzy classifier 

that the number of rules is 5, then the length of the mass is  

4*(3*(2+1)) +5*5==61 and its form is as follows: 

( , , , , , , , , , , , , , , )
1 2 3 14 15 16 17 56 57 58 59 60 61

p s s s s s s s s s s s s s    

Where 21, ss represent the start point and end point for the 

first fuzzy set of the first input variable. 2s  represents the 

membership function type for the first input variable and can 
vary between one and six. 4s to 36s encode the remaining 

fuzzy membership functions (start point, and point, and 
type, 37s to 41s represent the first fuzzy rule and 57s to 

61s represent the last fuzzy rule. Each possible rule is 

checked to see whether it represents a feasible rule or not. A 
rule without a nonzero antecedent or consequent part is not a 
feasible rule and will not be included in the rule set. This 
schedule is similar to chromosome representation, where Shi 
et al. [1] try to implement an evolutionary fuzzy classifier 
using genetic algorithm. Since we are interested in 
comparing the powerfulness of the evolutionary algorithms 
and swarm intelligence in task of optimizing fuzzy systems, 
the schedule of implementation of a fuzzy classifier using 
GA and PSO adopted from [1], [7] respectively  to reach 
more meaningful comparison results.  

B. Fitness Function Definition  

To evaluate the quality of each rule set, at first, a fitness 

value is defined for a rule as below: 

TNFP

TN

FNTP

TP
Q


 .  

Where  

TP: True Positives = number of instances covered by the 

rule that are correctly classified, i.e., its class matches the 

training target class. 

FP: False Positives = number of instances covered by the 

rule that are wrongly classified, i.e., its class differs from the 

training target class. 

TN: True Negatives = number of instances not covered by 

the rule, whose class differs from the training target class. 

FN: False Negatives = number of instances not covered by 

the rule, whose class matches the training target class. 

Then the total fitness of a rule set is defined as follows: 






k

l

lQFit

1

set )(Rule  

Where lQ is the fitness of the l'th rule of the K rules in the 

rule set. 

V. EXPERIMENTAL RESULTS 

The performance evaluation of the optimized fuzzy 
classifier (IGSF-classifier) is investigated in this Section. 
Also the comparative results with a fuzzy classifier whose 
rules and membership functions are optimized by GA [1] 
(namely GAF-classifier) and fuzzy classifier which designed 
by PSO PSF-Classifier are provided. recognition score for 
training data and testing data is performance aspect 
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considered for comparing above mentioned optimized fuzzy 
classifiers. Three pattern classification problems

1
with 

different feature vector dimensions (4, 9, 34), are used for 
performance evaluation and comparison of the results. A 
description of the data sets is given as follows: 

 
Iris data: The Iris data contains 50 measurements of four 
features of each three species: Iris setosa, Iris versicolor, and 
Iris virginica. Features are sepal length, sepal width, petal 
length and petal width. 
Cancer data: This breast cancer database, obtained from the 
University of Wisconsin Hospital, Madison, has 683 breast 
mass samples belonging to two classes Benign and 
Malignant, in a nine dimensional feature space. 
Dermatology data: The aim for this dataset is to determine 
the type of Eryhemato-Squamous Disease. This database 
contains 34 attributes, 33 of which are linear valued and one 
of them is nominal.  

To estimate more accurate performance measures, ten-
fold cross validation is used. It means 10% of whole training 
samples are randomly considered as testing points 
(validation sets) and others as training set for discovery and  
optimization of fuzzy rules and membership functions. The 
validation sets is used to estimate the generalization of 
classifier. The whole training set is randomly divided into 10 
disjoint sets of equal size. Then the PSO, GA and IGSA 
method is run 10 times for designing PSF-classifier and 
GAF-classifier and IGSF-classifier respectively. Each time 
with a different set held out as a validation. The estimated 
predictive accuracy values are the mean values of these 10 
scores of recognition for training data sets and testing data 
sets. The population size is 40 and the maximum number of 
iterations is set to 1000 for PSO, GA and IGSA. The 
mutation and crossover rates are chosen equal to 0.01 and 0.7  

A. Performance evaluation in the classification of  iris 

data set 

Table 1 presents the obtained predictive accuracy results  
by PSF-classifier, GAF-classifier and IGSF-classifier for 
training Iris data set. Also Table 2 presents the obtained 
predictive accuracy results by PSF-classifier, GAFclassifier 
and IGSF-classifier for testing Iris data set. Table 1 shows 
that the proposed IGSF-classifier outperforms other methods 
by obtained minimum, maximum, and average recognition 
scores for Iris data in training stage. Table 2 shows that the 
Minimum, maximum, and average recognition scores (%) for  

TABLE I.  MINIMUM, MAXIMUM, AND AVERAGE RECOGNITION 

SCORES (%) FOR IRIS DATA TRAINING POINTS, OBTAINED BY PSF-
CLASSIFIER, GAF-CLASSIFIER AND IGSF-CLASSIFIER 

PSF-

classifier 

 

PSF-

classifier 
IGSF-

classifier 

Classification 

rate 
Iris 

92.6 94.7 96.00 Min  
97.34 98.6 99.3 Max  
93.5 96.1 98.1 Average  

                                                           
1
 These data sets is available at: 

http;//www.ics.uci.edu/~mlearn/MLRepository.html 

TABLE II.  MINIMUM, MAXIMUM, AND AVERAGE RECOGNITION 

SCORES (%) FOR IRIS DATA TESTING POINTS, OBTAINED BY PSF-
CLASSIFIER, GAF-CLASSIFIER AND IGSF-CLASSIFIER 

PSF-

classifier 

 

PSF-

classifier 
IGSF-

classifier 

Classification 

rate 
Iris 

91.34 92.00 92.00 Min  
96.00 97.34 98.00 Max  
93.2 95.07 96.1 Average  

B. Performance evaluation in the classification of  Cancer 

data set 

TABLE III.  MINIMUM, MAXIMUM, AND AVERAGE RECOGNITION 

SCORES (%) FOR CANCER DATA TRAINING POINTS, OBTAINED BY PSF-
CLASSIFIER, GAF-CLASSIFIER AND IGSF-CLASSIFIER 

PSF-

classifier 

 

PSF-

classifier 
IGSF-

classifier 

Classification 

rate 
Cancer   

95.2 94.57 93.6 Min  
98.00 96.86 97.2 Max  
96.5 95.3 95.4 Average  

TABLE IV.   MINIMUM, MAXIMUM, AND AVERAGE RECOGNITION 

SCORES (%) FOR CANCER DATA DATA TESTING POINTS, OBTAINED BY 

PSF-CLASSIFIER, GAF-CLASSIFIER AND IGSF-CLASSIFIER 

PSF-

classifier 

 

PSF-

classifier 
IGSF-

classifier 

Classification rate Cancer 

93.70 93.40 92.85 Min  
96.56 95.70 96.8 Max  
95.1 94.2 94.3 Average  

 
Iris data training points, obtained by PSF-classifier, 

GAF-classifier and IGSF-Classifier obtained average 
recognition scores by the proposed method are better than 
PSF-classifier and GAF-classifier. Table 3 and Table 4 
presents the obtained predictive accuracy results  by PSF-
classifier, GAF-classifier and IGSF-classifier for training 
Cancer data set and testing Cancer data set respectively. for 
Cancer data set, the obtained average recognition score by 
GAF-classifier is better than other methods. But the 
difference of the performance of GAF-classifier and IGSF-
classifier is only 1.1%. It demonstrates that the performance 
of the proposed technique is comparable to GAF-classifier 
for Cancer data. only, for Cancer data, GAF-classifier 
outperforms the proposed IGSF-classifier in average 
recognition score by little value of 0.8%. For this data set, 
IGSF-classifier has the best performance with respect to 
maximum recognition score. 

C. Performance evaluation in the classification of  

Dermatology data set 

Table 5 and Table 6 presents the obtained predictive 
accuracy results  by PSF-classifier, GAF-classifier and 
IGSF-classifier for training Dermatology data set and testing 
Cancer data set respectively. Regarding dermatology data 

Archive of SID

www.SID.ir

http://www.sid.ir


TABLE V.  MINIMUM, MAXIMUM, AND AVERAGE RECOGNITION 

SCORES (%) FOR DERMATOLOGY DATA TRAINING POINTS, OBTAINED BY 

PSF-CLASSIFIER, GAF-CLASSIFIER AND IGSF-CLASSIFIER 

PSF-

classifier 

 

PSF-

classifier 
IGSF-

classifier 

Classification 

rate 
Dermatology 

89.7 91.8 91.0 Min  
95 95.5 96.3 Max  

93.0 93.9 94.1 Average  

TABLE VI.  ON SCORES (%) FOR DERMATOLOGY DATA TESTING 

POINTS, OBTAINED BY PSF-CLASSIFIER, GAF-CLASSIFIER AND IGSF-
CLASSIFIER 

PSF-

classifier 

 

PSF-

classifier 
IGSF-

classifier 

Classification 

rate 
Dermatology 

89.1 90.2 90.0 Min  
93.2 95.0 95.4 Max  
91.2 93.3 93.5 Average  

 
set, IGSF-classifier outperforms other methods for both 
maximum and average obtained scores of recognition. It 
should be mentioned that the improvements of the 
performance are not considerable and the performances of 
three methods are comparable to each other. These results 
illustrate the capability of the IGSF classifier in estimation of 
optimum parameters of a fuzzy classifier. 

I. CONCLUSION 

The bottleneck of the fuzzy logic based system for any 
application is the development of rule base and the formation 
of the membership function. This paper has proposed an 
approach based on Gravitational Search Algorithm that is 
adapted with fuzzy controller for the optimal design of the 
fuzzy classifier system. In the proposed approach, both rule 
base and the membership functions are evolved 
simultaneously with the objective of maximizing the 
correctly classified class.  
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