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Abstract—Reinforcement Learning is a popular context of 

machine learning that aims at improving the behavior of 

autonomous agents that learn from interactions with the 

environment. However, it is often costly, time consuming, and 

even dangerous. To deal with these problems, reward shaping 

has been used as a powerful method to accelerate the learning 

speed of the agent. The principle idea is to incorporate a 

numerical feedback, other than environment reward, for the 

learning agent. However, finding an efficient potential function 

to shape the reward is still an interesting area of research. In 

this paper, a new algorithm has been proposed that receives 

the environment graph, performs some new analysis, and 

provides the extracted information for the learning agent to 

accelerate the speed of learning. This information includes sub 

goals, bad states, and sub environments with different 

exploration, or reward, values. To evaluate this algorithm an 

experimental study has been conducted on two benchmark 

environments, Six Rooms and Maze. The obtained results 

demonstrate the effectiveness of the proposed algorithm. 

Keywords-Reinforcement Learning; Q-Learning;Reward 

Shaping;Artificial Feedback 

I.  INTRODUCTION 

Reinforcement Learning (RL) is an interesting area of the 
machine learning that aims at improving the behavior of the 
intelligent agent based on the reinforcement signals received 
from the environment [1]. The agent, instead of an explicit 
plan, is allowed to traverse the environment, and adopts an 
appropriate policy based on the instructive feedback taken 
from the environment over each action that results in the 
maximum achieved reward. Thus, the reward function 
implicitly defines the optimal behavior of the agent [1].  

In some real situations, however, like a football game, 
the environment reward is given to the agent with some 
delay which leads the agent to spend large amounts of time 
to attain the optimal behavior. There are a number of ways 
proposed in the literature, to overcome this issue [2-3]. 
Reward shaping is a method employed in the field to deal 
with this problem [4]. In this method, the designer produces 
a reward function virtually and provides it for the learning 
agent. In this method, the agent receives the reward in the 
first episodes of learning from this virtual reward function, 
since it does not take any reward from the environment in the 
early episodes of learning. The agent uses this virtual reward 
to optimize its behavior. Therefore, the shaped reward could 
have a significant effect to speed up the learning process. 

 The principle idea of reward shaping is to provide 
additional feedback by the designer, other than that of 
environment, for the agent in order to improve its 
convergence rate and learning speed [4]. In the next 
episodes, the agent adjusts its actions based on the 
knowledge learned from the environment, and the effect of 
the shaped reward is gradually reduced.  

Even though reward shaping has been proved to be a 
powerful method, determining the values of the shaped 
rewards for the real big environments is a challenging and 
sometimes even impossible task. To deal with such 
problems, one can produce the shaped rewards in some way 
automatically [5].  

In this paper, a new approach based on graph theory has 
been proposed that provides shaped rewards automatically 
for the reinforcement learning. In this approach, the agent 
estimates suitable rewards for different actions based on an 
analysis on the environment graph. Specifically, in this 
analysis two kinds of special states are recognized, sub goals 
and bad states. Sub goals are bottleneck states that have a 
major role in guiding the agent to the goal. The actions 
leading to these states are given a higher reward values. On 
the contrary, bad states are those that might increase the 
exploration time and have the least importance. Each action 
that leads to these states is given less reward value. 

Moreover, the graph of the environment is divided into 
some disjoint parts according to the dependency between its 
nodes. Then, the shaped reward for each action of each state 
is assigned based on a probability distribution. Each state in 
a bigger sub environment may have a greater likelihood to 
guide the agent to the goal, so it must be assigned a higher 
reward value. The shaped reward in this paper consists of the 
values gained considering sub goals, bad states, and 
probability distribution of the states in environment.  

In the learning function of the agent, a reducing factor 
has been considered for the shaped reward. While the shaped 
reward speeds up the learning process, the reducing factor 
preserves the effect of the learned knowledge from the 
environment, hence leading to hold the convergence property 
of the algorithm. 

The remainder of this paper is organized as follows: 
Section 2 gives a brief overview of the Markov Decision 
Process and reinforcement learning. The shaping reward is 
introduced in Section 3. The main contribution if this paper 
is presented in Section 4. Section 5 describes the 
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experimental studies and the results. Finally, some 
concluding remarks are given in Section 6.  

II. REINFORCEMENT LEARNING 

Markov decision process is a formal notation to model 
reinforcement learning problems that has been widely 
applied in discrete environments. 

A. Markov Decision Process 

Markov Decision Process which was first introduced by 
Bellman in 1957 [6], is a model for sequential decisions.  It 
is used when the function of an agent depends on a set of 
sequential decisions not just the current decision. Markov 
decision process is shown as a 5-tuple (S, A, T, R, α) in 
which each part is defined as follows [1]: S, all possible 
states in the environment; A, all possible actions for an agent 
in each step of decision; T, indicates the transition 
probability from state s to state s’ if the action a has been 
selected from the set of possible actions; R(s, a, s'), the 
received reward by the agent after selecting the action a and 
transition from state s to state s’ in the environment and α is 
a discount factor. 

B. Reinforcement Learning 

The first aim in the reinforcement learning is to transform 
the problem to one of the types of the Markov Decision 
Process. Then, the next step is to find an optimal policy for 
this problem. Dynamic programming strategy is one of the 
methods for finding an optimal policy. However, 
computational complexity of these algorithms increases 
exponentially by increasing the number of states. Q-Learning 
algorithms [7] and Sarsa learning [8] are the most famous 
methods of reinforcement learning. For example, in Q-
Learning algorithm in the discrete state, a Q(s, a) is defined 
for each pair of state-action. This value includes the whole 
reward received when the agent starts from the state s, 
performs the action a and follows the algorithm’s policy. 
Q(s, a) function is updated with (1) until it converges to the 
optimal amount: 
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In each step of this algorithm, an action with the highest 
value among the possible actions will be chosen.  

III. REWARD SHAPING IN REINFORCEMENT LEARNING 

The existing reinforcement algorithms attempt to find a 
policy which results in achieving the highest possible total 
reward. Thus, the reward function might describe an optimal 
behavior for the agent. Using an appropriate or optimal 
reward function can have a significant effect to speed up the 
learning. 

It should be noted that although shaped reward is a 
powerful tool in accelerating the learning of the agent, but a 
wrong definition of this function can considerably result in 
misleading of the agent [9]. Different studies exist in 

literature on how to define the shaped reward since 1992. 
These studies can be divided in two categories: (1) 
quantifying and assignment by the domain expert, and (2) 
automatic estimation. 

A. Use of the Domain Expert Knowledge 

In 1996, Bishop used the idea of multi-layer neural 
networks for quantifying the shaped reward [10]. In 2003, 
Dejong and Laud came up with the idea of valuing the states 
by changing the reward function [11]. In this approach, the 
agent just acts in a part of environment which is more likely 
to meet the goal and find the optimal policy. In 2005, Abeel 
and Ng [12] introduced a method about learning the reward 
function of domain expert by the agent. In this method, the 
agent tries to achieve the optimal solution by observing the 
behavior shown by the expert, avoiding interaction with the 
environment and just by his prior knowledge about 
determining assignments. In 2006, Ng and Bagnell proposed 
reward abstraction to shape the reward for the agent [13]. 
Then, in 2003, Wiewiora [14] proved that if agent has the 
shaped reward as the potential function in (2), it will finally 
converge to the optimal policy. 
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B. Automatic Calculation of the Shaped Reward 

In 2007, Marthi first introduced the idea of automatic 
shaping [15]. He applied state abstraction as input instead of 
the potential function which is totally dependent on the 
amount of expected reward and shaped the reward based on 
the abstraction. He proposed an algorithm which receives all 
feasible states of the environment as input and renews all the 
states which have the similar action in a task. It also accepts 
some temporary abstract actions and defines a new potential 
function and uses it in the structure of shaping the reward. In 
2008, Asmuth [16] proved that the algorithm based on R-
max model with the defined potential function can maintain 
the optimal policy if: 
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  In 2010, Kudenko and Grzes, presented a model [17] for 

learning the potential function in parallel with reinforcement 
learning based on the R-max algorithm. The presented 
algorithm defines a dynamic model from the environment for 
learning the potential function in an on -line manner. 
However, in all of the existing algorithms, this function is 
dependent on the knowledge of domain expert or value of 
the states based on the learned knowledge of the agent from 
the environment exploration. Thus, none of these algorithms 
can effectively accelerate the learning especially in the real 
and large environments. 

IV. THE PROPOSED APPROACH 

In this paper, a new algorithm has been proposed for 
estimation of shaped reward function which is neither 
dependent upon the domain expert knowledge nor 
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exploration of the environment by the agent. The proposed 
algorithm works based on the graph data structure. In 
addition, the new shaped reward function is defined based on 
the values gained from the graph analysis, finding the 
independent sub-graphs, determining bottleneck nodes 
(middle or suboptimal goals), and also nonsignificant nodes 
(bad states). Hence, in the next subsection mapping the 
environment to graph is described. Then, the proposed 
algorithm is given. 

A. Mapping the Environment to the Graph and Its Anlysis 

In order to construct a nondirectional and weightless 

graph G(V, E) based on Markov Decision Process, each state  

s → s' is considered as a node in graph and each transition v 

→ v' in the transition function is considered as an edge. Then, 

by automatic analysis of each graph, approximate value of 

exploration for each state is estimated which would give us 

the shaped reward function. This method has two 

advantages: (1) Valuing the shaped reward is not dependent 

upon the knowledge of the domain expert which might be 

erroneous. (2) It is also independent of environment 

exploration by the agent. So the agent does not need to learn 

and estimate the shaped reward.  

The first step of this analysis is to determine the middle 

or sub goals as special states in the environment. Reaching to 

these states would be useful for the agent in that it might 

cause to guide the agent to the goal faster. There are different 

methods to determine these sub goals [18]. For the case of 

our algorithm, the method based on computing the 

betweenness centrality [18] of the graph has been utilized. 

This criterion is defined as follows: 
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In the (4), the denominator of the fraction is the number 

shortest paths between the nodes s and t, and nominator 

shows the number of shortest paths between the nodes s and t 

that crosses over the node v. The node with the highest BC(v) 

value would be considered as a sub goal. Upon determining 

these nodes and defining more virtual reward for them, the 

next step is to determine bad states based on the adjacency 

matrix of the graph. Bad states are those with the least 

number of adjacent states that are not sub goal. For these 

states, less virtual reward would be assigned.  

The amount of the virtual rewards for bad states and sub 

goals are determined based on a proportion of the reward 

value for the goal state. In the experimental studies Section, 

we point to the exact values considered for them. 

The last step is decomposition of the graph to the 

independent sub graphs based on the middle goals to 

estimate a different value for each simple state 

(nonsignificant or bad states, and sub goals). This value is 

calculated based on the intuition that the goal has a great 

likelihood to be located in the bigger sub graph. The reward 

value of a simple state is proportionate to the number of 

nodes in the sub graph enclosing that state to the number of 

total states in the graph. This proportion is then multiplied by 

the reward value of the bad state. 

Finally, by determining the virtual value of each 

state/action, it is used to form the shaped reward matrix 

based on the proposed methods. Even though the usage of 

this reward in Q-Learning equation has a significant effect in 

accelerating the learning of the agent, but the results of 

experiments have shown that combination of this reward 

with the potential function makes an increase of at least 20 

percent in convergence rate and learning speed. 

B. The Algorithm 

By analysis of the resulted graph of environment, the 
virtual value of each state is calculated automatically. This 
virtual reward is defined as ManualReward(s, a). In the 
proposed algorithm shown in Fig. 1, by using a discount 
factor in Q-Learning equation, the agent learns the 
environment over time and this factor makes the 
ManualReward to lose its effect upon advancing the 
simulation. This is meant to maintain the algorithm’s 
convergence if there would be any error in automatic valuing 
of rewards. It prevents from misleading the agent.  

According to the new defined equation for updating Q(s, 
a), two effective parameters in accelerating the learning are 
simultaneously applied: (1) The potential function, that is 
updated in parallel with learning the environment. Therefore, 
it is not required to wait for the agent that reaches the goal 
and receives the feedback from the environment. (2) 
Necessary actions to learn the environment and reach the 
goal would be decreased as a result of receiving the shaped 
reward obtained from analysis of the graph. This would 
consequently lead to speed up the learning process. 
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According to (5), using discount coefficient for shaped 
reward causes the agent to act randomly in first episodes. But 
over time and by finding sufficient knowledge of 
environment, it eagerly selects the actions based on the most 
receivable reward.  

V. EXPERIMENTAL STUDIES 

The proposed algorithm has been evaluated empirically 
on the Six Rooms and Maze benchmark environments. The 
environments have been shown in part (a) and (b) of Fig. 2 
respectively. In the experiments, following values were used: 
α = 0.5, γ = 0.9, σ = 0.9. In addition, we have considered the 
values for sub goals and bad states, one percent of the reward 
value for the goal state. Note that the magnitude of reward 
value considered for sub goal was positive and for bad state 
was negative. In all experiments, the random exploration was  
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input: The matrices Q, reward, and next for a given environment 

output: The final r value for each episode of the simulation 

declare:  

           Beta(episode): A function to reduce the effect of the domain expert reward values, it is defined as follows: 

                           exp[- (episode * episode) / (sigma * sigma)] in which sigma is a constant value between 0 and 1. 

            Modify(manualReward): A function that finds sub goals and bad states automatically, and then modifies 

                                                     the manualReward matrix according the these special states. 

algorithm QLearningWithShapingAndManualReward begin 

       Initialize manualReward(s, a) with reward(s, a) 

       Modify(manualReward) 

       for each episode do begin 

              Initialize s, e.g. randomly 

              r := 0 

              repeat (for each step, action, of episode) 

                     Choose a from s using policy derived from Q (e.g., ε-greedy) 

                     s’ := next(s, a) 

                     r := r + reward(s, a) 

                     Q(s, a) := Q(s, a) + α * [r + maxa’ Q(s’, a’) – Q(s, a) + Beta(episode) * manualReward(s, a)  +  

                                                γ * maxa’ Q(s’, a’) – Q(s, a)] 

                     s := s’ 

              until s is terminal or the number of actions exceeds a threshold 

              Store the number of current episode and the corresponding final r value. 

       endfor 

end QLearningWithShapingAndManualReward 

Figure 1.  The proposed algorithm 

 
                                                (a)                                                                                                                (b) 

Figure 2.  (a) The Six Room environment, (b) The Complete Maze environment 

 

                                                               

used for the first 50 episodes and then ε-greedy exploration 
[1] strategy was used for the remaining episodes with ε set to 
0.1. Moreover, each experiment has been run for 2000 
episodes. The results have been shown in Fig. 3 and Fig. 4 
for the Six Rooms and Maze environments respectively. In 
each figure, the part (a) compares the average reward per 
episode averaged per 20 episodes for Q-Learning and the 
proposed algorithm, and the part (b) compares the average 
cumulative reward for the mentioned algorithms and the two 
benchmark environments. Since the reward values achieves 
convergence at about the episode number of 500 and 1000 

for the Q-Learning and the proposed algorithm respectively, 
the remaining part of each diagram has been cut.  

As can be seen in part (a) of Fig. 3 and Fig. 4, the new 
algorithm shows significant improvement over the Q-
Learning method for the two benchmark environments with 
respect to accelerating the learning speed and the 
convergence rate. 

To determine whether the achieved improvement of the 
proposed algorithm over the Q-Learning method is 
statistically significant, we have used a statistical approach, 
called hypothesis test for the difference of the two means 
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[19]. To achieve this, the z value has been computed using 
(6). This value is then referenced in a table of critical values. 
The z value was computed to 5.36 and 12.08 for the Six 
Rooms and Maze environments respectively. We used as 
reference a table of critical values presented in [19]. For the 
computed z values, it turns out that we can reject the null 
hypothesis with the confidence over than 99.99 percent. 
Rejecting the null hypothesis implies that the difference in 
the mean values of the obtained rewards achieved by the new 
algorithm and Q-Learning algorithm is statistically 
significant.  
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VI. CONCLUSIONS 

In this paper, a new algorithm has been proposed using 
the environment graph analysis that achieves a new reward 
matrix as the shaped reward. The benefit of this algorithm is 
that it is independent of the domain expert’s knowledge, 
which might be erroneous. Instead, it spends some time to 
learn the shaped reward by the agent and still preserves the 
convergence of the algorithm. The experimental results 
showed that the new algorithm is effective both in increasing 
the learning speed and convergence rate. Since constructing 
the environment graph could be implemented in polynomial 
time, the proposed algorithm can be applied for every real 
environment, no matter how large it is.  
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                                                                 (a)                                                                                                                       (b) 

Figure 3.  The results of experiment on the Six Rooms environement. (a) The average reward per episode, (b) The average cumulative reward 
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                                                                (a)                                                                                                                    (b) 

Figure 4.  The results of experiment on the Complete Maze environement. (a) The average reward per episode, (b) The average cumulative reward
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