
Automatic Reward Shaping in Reinforcement Learning using Graph Analysis

Maryam Marashi
School of Math and Computer Science

Amirkabir University of Technology

Tehran, Iran

marashi_maryam@aut.ac.ir

Alireza Khalilian

School of Computer Engineering

Iran University of Science and

Technology

Tehran, Iran

khalilian@comp.iust.ac.ir

Mohammad Ebrahim Shiri
School of Math and Computer Science

Amirkabir University of Technology

Tehran, Iran

shiri@aut.ac.ir

Abstract—Reinforcement Learning is a popular context of

machine learning that aims at improving the behavior of

autonomous agents that learn from interactions with the

environment. However, it is often costly, time consuming, and

even dangerous. To deal with these problems, reward shaping

has been used as a powerful method to accelerate the learning

speed of the agent. The principle idea is to incorporate a

numerical feedback, other than environment reward, for the

learning agent. However, finding an efficient potential function

to shape the reward is still an interesting area of research. In

this paper, a new algorithm has been proposed that receives

the environment graph, performs some new analysis, and

provides the extracted information for the learning agent to

accelerate the speed of learning. This information includes sub

goals, bad states, and sub environments with different

exploration, or reward, values. To evaluate this algorithm an

experimental study has been conducted on two benchmark

environments, Six Rooms and Maze. The obtained results

demonstrate the effectiveness of the proposed algorithm.

Keywords-Reinforcement Learning; Q-Learning;Reward

Shaping;Artificial Feedback

I. INTRODUCTION

Reinforcement Learning (RL) is an interesting area of the
machine learning that aims at improving the behavior of the
intelligent agent based on the reinforcement signals received
from the environment [1]. The agent, instead of an explicit
plan, is allowed to traverse the environment, and adopts an
appropriate policy based on the instructive feedback taken
from the environment over each action that results in the
maximum achieved reward. Thus, the reward function
implicitly defines the optimal behavior of the agent [1].

In some real situations, however, like a football game,
the environment reward is given to the agent with some
delay which leads the agent to spend large amounts of time
to attain the optimal behavior. There are a number of ways
proposed in the literature, to overcome this issue [2-3].
Reward shaping is a method employed in the field to deal
with this problem [4]. In this method, the designer produces
a reward function virtually and provides it for the learning
agent. In this method, the agent receives the reward in the
first episodes of learning from this virtual reward function,
since it does not take any reward from the environment in the
early episodes of learning. The agent uses this virtual reward
to optimize its behavior. Therefore, the shaped reward could
have a significant effect to speed up the learning process.

 The principle idea of reward shaping is to provide
additional feedback by the designer, other than that of
environment, for the agent in order to improve its
convergence rate and learning speed [4]. In the next
episodes, the agent adjusts its actions based on the
knowledge learned from the environment, and the effect of
the shaped reward is gradually reduced.

Even though reward shaping has been proved to be a
powerful method, determining the values of the shaped
rewards for the real big environments is a challenging and
sometimes even impossible task. To deal with such
problems, one can produce the shaped rewards in some way
automatically [5].

In this paper, a new approach based on graph theory has
been proposed that provides shaped rewards automatically
for the reinforcement learning. In this approach, the agent
estimates suitable rewards for different actions based on an
analysis on the environment graph. Specifically, in this
analysis two kinds of special states are recognized, sub goals
and bad states. Sub goals are bottleneck states that have a
major role in guiding the agent to the goal. The actions
leading to these states are given a higher reward values. On
the contrary, bad states are those that might increase the
exploration time and have the least importance. Each action
that leads to these states is given less reward value.

Moreover, the graph of the environment is divided into
some disjoint parts according to the dependency between its
nodes. Then, the shaped reward for each action of each state
is assigned based on a probability distribution. Each state in
a bigger sub environment may have a greater likelihood to
guide the agent to the goal, so it must be assigned a higher
reward value. The shaped reward in this paper consists of the
values gained considering sub goals, bad states, and
probability distribution of the states in environment.

In the learning function of the agent, a reducing factor
has been considered for the shaped reward. While the shaped
reward speeds up the learning process, the reducing factor
preserves the effect of the learned knowledge from the
environment, hence leading to hold the convergence property
of the algorithm.

The remainder of this paper is organized as follows:
Section 2 gives a brief overview of the Markov Decision
Process and reinforcement learning. The shaping reward is
introduced in Section 3. The main contribution if this paper
is presented in Section 4. Section 5 describes the

Archive of SID

www.SID.ir

http://www.sid.ir

experimental studies and the results. Finally, some
concluding remarks are given in Section 6.

II. REINFORCEMENT LEARNING

Markov decision process is a formal notation to model
reinforcement learning problems that has been widely
applied in discrete environments.

A. Markov Decision Process

Markov Decision Process which was first introduced by
Bellman in 1957 [6], is a model for sequential decisions. It
is used when the function of an agent depends on a set of
sequential decisions not just the current decision. Markov
decision process is shown as a 5-tuple (S, A, T, R, α) in
which each part is defined as follows [1]: S, all possible
states in the environment; A, all possible actions for an agent
in each step of decision; T, indicates the transition
probability from state s to state s’ if the action a has been
selected from the set of possible actions; R(s, a, s'), the
received reward by the agent after selecting the action a and
transition from state s to state s’ in the environment and α is
a discount factor.

B. Reinforcement Learning

The first aim in the reinforcement learning is to transform
the problem to one of the types of the Markov Decision
Process. Then, the next step is to find an optimal policy for
this problem. Dynamic programming strategy is one of the
methods for finding an optimal policy. However,
computational complexity of these algorithms increases
exponentially by increasing the number of states. Q-Learning
algorithms [7] and Sarsa learning [8] are the most famous
methods of reinforcement learning. For example, in Q-
Learning algorithm in the discrete state, a Q(s, a) is defined
for each pair of state-action. This value includes the whole
reward received when the agent starts from the state s,
performs the action a and follows the algorithm’s policy.
Q(s, a) function is updated with (1) until it converges to the
optimal amount:

)],(max*),([*

),()1(),(

''

1

' asQasr

asQasQ

tAa

tt

s∈

+

+

+−←

γα

α
 (1)

In each step of this algorithm, an action with the highest
value among the possible actions will be chosen.

III. REWARD SHAPING IN REINFORCEMENT LEARNING

The existing reinforcement algorithms attempt to find a
policy which results in achieving the highest possible total
reward. Thus, the reward function might describe an optimal
behavior for the agent. Using an appropriate or optimal
reward function can have a significant effect to speed up the
learning.

It should be noted that although shaped reward is a
powerful tool in accelerating the learning of the agent, but a
wrong definition of this function can considerably result in
misleading of the agent [9]. Different studies exist in

literature on how to define the shaped reward since 1992.
These studies can be divided in two categories: (1)
quantifying and assignment by the domain expert, and (2)
automatic estimation.

A. Use of the Domain Expert Knowledge

In 1996, Bishop used the idea of multi-layer neural
networks for quantifying the shaped reward [10]. In 2003,
Dejong and Laud came up with the idea of valuing the states
by changing the reward function [11]. In this approach, the
agent just acts in a part of environment which is more likely
to meet the goal and find the optimal policy. In 2005, Abeel
and Ng [12] introduced a method about learning the reward
function of domain expert by the agent. In this method, the
agent tries to achieve the optimal solution by observing the
behavior shown by the expert, avoiding interaction with the
environment and just by his prior knowledge about
determining assignments. In 2006, Ng and Bagnell proposed
reward abstraction to shape the reward for the agent [13].
Then, in 2003, Wiewiora [14] proved that if agent has the
shaped reward as the potential function in (2), it will finally
converge to the optimal policy.

)()(*),(''
sQsQssF −= γ (2)

B. Automatic Calculation of the Shaped Reward

In 2007, Marthi first introduced the idea of automatic
shaping [15]. He applied state abstraction as input instead of
the potential function which is totally dependent on the
amount of expected reward and shaped the reward based on
the abstraction. He proposed an algorithm which receives all
feasible states of the environment as input and renews all the
states which have the similar action in a task. It also accepts
some temporary abstract actions and defines a new potential
function and uses it in the structure of shaping the reward. In
2008, Asmuth [16] proved that the algorithm based on R-
max model with the defined potential function can maintain
the optimal policy if:

),(max)(asQsQ a≥ (3)

 In 2010, Kudenko and Grzes, presented a model [17] for

learning the potential function in parallel with reinforcement
learning based on the R-max algorithm. The presented
algorithm defines a dynamic model from the environment for
learning the potential function in an on -line manner.
However, in all of the existing algorithms, this function is
dependent on the knowledge of domain expert or value of
the states based on the learned knowledge of the agent from
the environment exploration. Thus, none of these algorithms
can effectively accelerate the learning especially in the real
and large environments.

IV. THE PROPOSED APPROACH

In this paper, a new algorithm has been proposed for
estimation of shaped reward function which is neither
dependent upon the domain expert knowledge nor

Archive of SID

www.SID.ir

http://www.sid.ir

exploration of the environment by the agent. The proposed
algorithm works based on the graph data structure. In
addition, the new shaped reward function is defined based on
the values gained from the graph analysis, finding the
independent sub-graphs, determining bottleneck nodes
(middle or suboptimal goals), and also nonsignificant nodes
(bad states). Hence, in the next subsection mapping the
environment to graph is described. Then, the proposed
algorithm is given.

A. Mapping the Environment to the Graph and Its Anlysis

In order to construct a nondirectional and weightless

graph G(V, E) based on Markov Decision Process, each state

s → s' is considered as a node in graph and each transition v

→ v' in the transition function is considered as an edge. Then,

by automatic analysis of each graph, approximate value of

exploration for each state is estimated which would give us

the shaped reward function. This method has two

advantages: (1) Valuing the shaped reward is not dependent

upon the knowledge of the domain expert which might be

erroneous. (2) It is also independent of environment

exploration by the agent. So the agent does not need to learn

and estimate the shaped reward.

The first step of this analysis is to determine the middle

or sub goals as special states in the environment. Reaching to

these states would be useful for the agent in that it might

cause to guide the agent to the goal faster. There are different

methods to determine these sub goals [18]. For the case of

our algorithm, the method based on computing the

betweenness centrality [18] of the graph has been utilized.

This criterion is defined as follows:

∑
≠≠−

=
tsu st

st v

n
vBC

σ

σ)(

1

1
)((4)

In the (4), the denominator of the fraction is the number

shortest paths between the nodes s and t, and nominator

shows the number of shortest paths between the nodes s and t

that crosses over the node v. The node with the highest BC(v)

value would be considered as a sub goal. Upon determining

these nodes and defining more virtual reward for them, the

next step is to determine bad states based on the adjacency

matrix of the graph. Bad states are those with the least

number of adjacent states that are not sub goal. For these

states, less virtual reward would be assigned.

The amount of the virtual rewards for bad states and sub

goals are determined based on a proportion of the reward

value for the goal state. In the experimental studies Section,

we point to the exact values considered for them.

The last step is decomposition of the graph to the

independent sub graphs based on the middle goals to

estimate a different value for each simple state

(nonsignificant or bad states, and sub goals). This value is

calculated based on the intuition that the goal has a great

likelihood to be located in the bigger sub graph. The reward

value of a simple state is proportionate to the number of

nodes in the sub graph enclosing that state to the number of

total states in the graph. This proportion is then multiplied by

the reward value of the bad state.

Finally, by determining the virtual value of each

state/action, it is used to form the shaped reward matrix

based on the proposed methods. Even though the usage of

this reward in Q-Learning equation has a significant effect in

accelerating the learning of the agent, but the results of

experiments have shown that combination of this reward

with the potential function makes an increase of at least 20

percent in convergence rate and learning speed.

B. The Algorithm

By analysis of the resulted graph of environment, the
virtual value of each state is calculated automatically. This
virtual reward is defined as ManualReward(s, a). In the
proposed algorithm shown in Fig. 1, by using a discount
factor in Q-Learning equation, the agent learns the
environment over time and this factor makes the
ManualReward to lose its effect upon advancing the
simulation. This is meant to maintain the algorithm’s
convergence if there would be any error in automatic valuing
of rewards. It prevents from misleading the agent.

According to the new defined equation for updating Q(s,
a), two effective parameters in accelerating the learning are
simultaneously applied: (1) The potential function, that is
updated in parallel with learning the environment. Therefore,
it is not required to wait for the agent that reaches the goal
and receives the feedback from the environment. (2)
Necessary actions to learn the environment and reach the
goal would be decreased as a result of receiving the shaped
reward obtained from analysis of the graph. This would
consequently lead to speed up the learning process.

2

2

'

'

)],(),(max*

),(Re*

),(),(max[),(),(

''

''

σβ

γ

β

α

t

a

a

e

asQasQ

aswardmanual

asQasQrasQasQ

−

=

−

+

+−++=

 (5)

According to (5), using discount coefficient for shaped
reward causes the agent to act randomly in first episodes. But
over time and by finding sufficient knowledge of
environment, it eagerly selects the actions based on the most
receivable reward.

V. EXPERIMENTAL STUDIES

The proposed algorithm has been evaluated empirically
on the Six Rooms and Maze benchmark environments. The
environments have been shown in part (a) and (b) of Fig. 2
respectively. In the experiments, following values were used:
α = 0.5, γ = 0.9, σ = 0.9. In addition, we have considered the
values for sub goals and bad states, one percent of the reward
value for the goal state. Note that the magnitude of reward
value considered for sub goal was positive and for bad state
was negative. In all experiments, the random exploration was

Archive of SID

www.SID.ir

http://www.sid.ir

input: The matrices Q, reward, and next for a given environment

output: The final r value for each episode of the simulation

declare:

 Beta(episode): A function to reduce the effect of the domain expert reward values, it is defined as follows:

 exp[- (episode * episode) / (sigma * sigma)] in which sigma is a constant value between 0 and 1.

 Modify(manualReward): A function that finds sub goals and bad states automatically, and then modifies

 the manualReward matrix according the these special states.

algorithm QLearningWithShapingAndManualReward begin

 Initialize manualReward(s, a) with reward(s, a)

 Modify(manualReward)

 for each episode do begin

 Initialize s, e.g. randomly

 r := 0

 repeat (for each step, action, of episode)

 Choose a from s using policy derived from Q (e.g., ε-greedy)

 s’ := next(s, a)

 r := r + reward(s, a)

 Q(s, a) := Q(s, a) + α * [r + maxa’ Q(s’, a’) – Q(s, a) + Beta(episode) * manualReward(s, a) +

 γ * maxa’ Q(s’, a’) – Q(s, a)]

 s := s’

 until s is terminal or the number of actions exceeds a threshold

 Store the number of current episode and the corresponding final r value.

 endfor

end QLearningWithShapingAndManualReward

Figure 1. The proposed algorithm

 (a) (b)

Figure 2. (a) The Six Room environment, (b) The Complete Maze environment

used for the first 50 episodes and then ε-greedy exploration
[1] strategy was used for the remaining episodes with ε set to
0.1. Moreover, each experiment has been run for 2000
episodes. The results have been shown in Fig. 3 and Fig. 4
for the Six Rooms and Maze environments respectively. In
each figure, the part (a) compares the average reward per
episode averaged per 20 episodes for Q-Learning and the
proposed algorithm, and the part (b) compares the average
cumulative reward for the mentioned algorithms and the two
benchmark environments. Since the reward values achieves
convergence at about the episode number of 500 and 1000

for the Q-Learning and the proposed algorithm respectively,
the remaining part of each diagram has been cut.

As can be seen in part (a) of Fig. 3 and Fig. 4, the new
algorithm shows significant improvement over the Q-
Learning method for the two benchmark environments with
respect to accelerating the learning speed and the
convergence rate.

To determine whether the achieved improvement of the
proposed algorithm over the Q-Learning method is
statistically significant, we have used a statistical approach,
called hypothesis test for the difference of the two means

Archive of SID

www.SID.ir

http://www.sid.ir

[19]. To achieve this, the z value has been computed using
(6). This value is then referenced in a table of critical values.
The z value was computed to 5.36 and 12.08 for the Six
Rooms and Maze environments respectively. We used as
reference a table of critical values presented in [19]. For the
computed z values, it turns out that we can reject the null
hypothesis with the confidence over than 99.99 percent.
Rejecting the null hypothesis implies that the difference in
the mean values of the obtained rewards achieved by the new
algorithm and Q-Learning algorithm is statistically
significant.

2

2
2

1

2
1

21

n

s

n

s

xx

+

−− δ
 (6)

VI. CONCLUSIONS

In this paper, a new algorithm has been proposed using
the environment graph analysis that achieves a new reward
matrix as the shaped reward. The benefit of this algorithm is
that it is independent of the domain expert’s knowledge,
which might be erroneous. Instead, it spends some time to
learn the shaped reward by the agent and still preserves the
convergence of the algorithm. The experimental results
showed that the new algorithm is effective both in increasing
the learning speed and convergence rate. Since constructing
the environment graph could be implemented in polynomial
time, the proposed algorithm can be applied for every real
environment, no matter how large it is.

REFERENCES

[1] S.Sutton & A.G.Barto, Reinforcement Learning : An Introduction,

1998

[2] M. J. Mataric. Reward functions for accelerated learning. In

Proceedings of the 11th International Conference on Machine

Learning(ICML), pages 181-189, 1994.

[3] A.Epshteyn and G.Dejong, Qualitative Reinforcement Learning,

Appearing in Proceedings of the 23 rd International Conference on

Machine Learning, Pittsburgh, PA, 2006.

[4] Andrew Y.Ng, Shaping and police search in reinforcement learning,

PhD Thesis, University of California, Berkeley, 2003

[5] A. LAUD, Theory And Application Of Reward Shaping In

Reinforcement Learning, PhD Thesis, University of Illinois at

Urbana-Champaign, 2004

[6] Putternman, Markov Decision Process, Wiley-Interscience;1 edition

(March 3,2005), 2005

[7] L.P. Kaelbling, et al., Reinforcement Learning : A Survey ,Journal Of

Artificial Intelligence Research, vol.4, pp.237-285, 1996

[8] G. A. Rummery and M. Niranjan, "On-Line Q-Learning Using

Connectionist Systems," 1994.
[9] Randløv and p.Alstrom, Learning to drive a bicycle using

reinforcement learning and shaping, J. (Ed.), In Proceedings of the

15th international conference on machine learning, pages 463-

471,Morgan Kaufmann,CA., 1998

[10] Bishop, C. M. ,Neural networks for pattern recognition. Oxford

University Press., 1996

[11] Wiewiora, E., Potential-based shaping and Q-value initialization are

equivalent. Journal of Artificial Intelligence Research., page 205-208,

2003

[12] Abbeel, P., & Ng, A. Y., Exploration and apprenticeship learning in

reinforcement learning. ICML., 2005

[13] Bagnell, J., and Ng, A., On local reward and scaling distributed

reinforcement learning, Neural Information Processing System. MIT

Press., 2006

[14] J.Asmuth, M. L.Littman, & R.Zinkov, Potential-based shaping in

modelbased reinforcement learning. In Proceedings of AAAI

conference on Artificial Intelligence. , 2008

[15] B.Marthi, S.Russell, Automatice shaping and Decomposition of

Reward function., In Proceedings of the 24th International Conference

on Machine Learning(ICML), pages 601-608, 2007.

[16] J.Asmuth, M. L.Littman & R.Zinkov, Potential-based shaping in

modelbased reinforcement learning. In Proceedings of AAAI

conference on artificial intelligence. , 2008

[17] Marek Grze, Daniel Kudenko., Online learning of shaping rewards in

reinforcement learning., Department of Computer Science, University

of York, York, YO10 5DD, UK., pp. 541-550, 2010

[18] P.Moradi, PhD Thesis, University Iran, 2011

[19] J. E. Freund, Mathematical statistics, 5th ed., Prentice-Hall, 1992

 (a) (b)

Figure 3. The results of experiment on the Six Rooms environement. (a) The average reward per episode, (b) The average cumulative reward

Archive of SID

www.SID.ir

http://www.sid.ir

 (a) (b)

Figure 4. The results of experiment on the Complete Maze environement. (a) The average reward per episode, (b) The average cumulative reward

Archive of SID

www.SID.ir

http://www.sid.ir

