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Abstract—In the recent years there has been an interest within 
the physics community in the properties of networks of many 
types. Graph clustering is the process of identifying the 
network structure in terms of grouping the vertices of a graph 
into clusters taking into consideration the edge structure of the 
graph that in such a way there should be many edges within 
each cluster and relatively few between the clusters. Based on 
high computational cost, the classical algorithms will slow 
much since data size in real application increases rapidly. In 
such a situation, model based graph clustering algorithms are 
an efficient alternative to classical ones. The performance of 
the model based graph clustering algorithms depends on the 
correct initial parameter setting. We are proposed an 
evolutionary algorithm to find proper values for the model 
based graph clustering algorithms. The proposed method is 
tested on both simulated and real data sets and gave improving 
results in comparison with random parameter setting. 

Keywords-Mixture model; Genetic Algorithm; Random 
Graphs; Graph clustering 

I. INTRODUCTION 

Recently, graph clustering algorithms are applied to 
discover structural properties of networks of different types 
including World Wide Web, social, biological, email, 
citation and transportation networks and software. Nodes in 
real networks are structured into communities or groups. The 
process of finding these groups of nodes is called graph 
clustering. Many different approaches have been proposed 
for community detection in networks. These approaches can 
be divided in two main classes. The first class of proposed 
approaches are algorithmic which is based on spectral graph 
theory, optimization of centrality measure or other 
approaches. The second category of proposed approaches is 
model-based or based on random graph model. Model-based 
approaches rely on a statistical model of network edges and 
vertices.  

Graph nodes in the random graph model are given and 
edges can be considered as random variables. The most 
famous random graph model is Erdös–Rényi model where 
each pair of nodes is connected with the probability of p. But 
this model does not present most of the real networks 
properties such as degree distribution and clustering 
coefficient. The alternative model is Erdös–Rényi mixture 
model [1-4] which is proposed to overcome the limitation of 

the previous random graph models in real networks 
modeling. This model is associated with EM algorithm and 
allows capturing structure of a network and particularly 
detect communities, assumed nodes are spread over an 
unknown number of hidden communities, which have a low 
density of edges between groups and a high density of edges 
within each group[5]. Unfortunately, the performance of the 
model depends on initial values of corresponding 
parameters. An evolutionary algorithm is proposed to 
estimate proper initial values for the model to improve the 
results of the model in this paper. The experiments of 
different simulated and real networks present the proposed 
algorithm improves the performance of the main Erdös–
Rényi mixture model. 

The rest of the paper followed by. In the next section 
Erdös–Rényi mixture model theory is presented. In the third 
section the proposed evolutionary algorithm is presented and 
the results of it described in the fourth section. And it is 
concluded in the fifth section. 

A. Notation 

We consider an undirected graph without self-loop with n 
vertices and define the variable Xij which equals 1 if vertices i 
and j are connected and to zero otherwise. In our case Xii= 0 
why graphs are without self-loop. However, what we 
propose in the following method can be generalized to 
directed graphs (Xij≠ Xji) with self-loops (Xii≠0). We also 
denote Ki the degree of vertex i, i.e. the number of edges 
connecting it: 

Ki = Σj≠ iXij 

 

II. ERDÖS–RÉNYI MIXTURE  MODEL 

The Erdös–Rényi mixture model proposed by Daudin [1] 
contains a mixture of distributions assumes vertices are 
partitioned into Q classes with prior probabilities {⍺1,…,⍺Q}. 
Moreover, a sequence of independent hidden variables {Ziq} 
(with qZiq=1) which are exists to indicate label of vertices 
to classes such that: 

αq = Pr{Ziq = 1} = Pr{i ∈q},       with Σqαq = 1 (2) 

(1) 
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Then we denote πql the probability for a vertex from class q 
to be connected to a vertex from class l.  

To estimate the model parameters a variational approach 
based on EM 1  algorithm has been proposed [6]. This 
approach is used to perform an approximation of maximum 
likelihood on the parameters which aims at optimizing a 
lower bound of the following likelihood: 

logℒ (�, �) = ΣiΣq  Ziq   log αq 

+ ½ Σi ≠ j Σq,l  Ziq Zjl  logb(Xij; πql) 

where b(X; π) = πx (1-π)1-x,  � = {Xij}i,j=1,…,n  , 

� = {���}���,…,�
���,…,�

 

� describe set of all edges and � set of all indicator 
variables for vertices, For more details, refer to [1]. The 
estimation parts of the EM algorithm starts with some initial 
values {�iq(0)} that �iq is an approximation of Pr{Ziq = 1|�} 
and parameters �i, α and π are iteratively updated are 
followed: 

(α(h + 1), π(h + 1)) = arg max �(R�; {�i
(h)}, α, π) 

 
(�(h + 1) = arg max �(R�; {�i}, α(h + 1), π(h + 1)) 
 
 

where �(R�;{�i
(h)}, α, π) is an estimation of logℒ(�) with 

parameters �i
(h), α, π. 

This EM algorithm is a local optimization algorithm and 
its performance depends strongly on the proper setting of its 
initial parameter values [5]. Therefore, improper initial 
values of the parameter, can acquire poor results 
consequently. 

III. PROPOSED ALGORITHM 

As it mentioned, all local optimization algorithms are 
very sensitive about initial values of their parameters. 
Unsuitable initial values of MixNet2 parameters acquire low 
accuracy detection of the correct community of each vertex. 
We assume each vertex of the given graph has a cluster. 

In this section an evolutionary approach is proposed to 
set initial values of the Erdös–Rényi mixture model 
parameters. Following the previous section, these parameters 
are �, � and � with the following limitations. 

 

 Σl=1,…,Q  �il= 1 (5) 

 Σl=1,…,Q  πql  = 1 (6) 

 Σl=1,…,Q  αl  = 1 (7) 

                                                        
1 Expectation-Maximization 
2 Other name of Erdös–Rényi mixture model 

A. Representing the Chromosom 

Given the variational parameters {�i}, the values of 
parameters α and π are 

αq = 1/n Σi�iq ,  πql = Σi≠j�iq�jl Xij / Σi≠j�iq�jl 

This equation is derived by the Eq. 6 and 7. According to 
definition � is a 2-Dimension matrix. The rows are 
corresponding to vertices and the columns are corresponding 
to clusters and �iq shows the probability of the vertex i 
belong in cluster q. Therefore, the chromosome structure is 
used to estimate � is 2D, see Fig. 1. Moreover, this 
representation must satisfying Eq. 5. 

B. Fitness Function 

The ultimate goal of the algorithm is selecting the best 
initial values of parameters that get maximum accuracy 
detection of the correct cluster of each vertex for a given 
graph. Therefore, the evaluation of current selected values of 
the parameters should be based on the correct clustered 
vertices of a given graph. According to likelihood definition, 
likelihood is a function of the parameters of a statistical 
model and the likelihood of a set of parameters values given 
some observed data equal the probability of those observed 
outcomes given those parameter values [7, 8]. We have used 
complete likelihood (Eq. 3) as fitness function of the 
proposed genetic algorithm. High value of the fitness shows 
a good chromosome. 

C. Genetic operators 

1) Reproduction: This opreator is performed with 
probability Pr. A chromosome is randomly selected from the 
current population and copied into the new population 
without any modification. 

2) Crossover: This opreator is performed with 
probability Pc. To cope with 2D representaion of 
chromosomes, the uniform crossover [9] of the conventional 
GA is adapted. First, two different random parents 
(chromosomes) from the current population selected. We 
consider each chromosome contains two parts, these  two 
parts can be have non-equal size. However two 
corresponding parts in each parent must have same size, see 
Fig. 2. Then we exchnage the first part of a parent and the 
first part of other parent, see Fig. 3. 

3) Mutation: the mutation operator of the proposed 
approach replace the values of some genes with new values 
from the values space.  

a) Mutation in row values level: This opreator is 
performed with probability Pmv. First, one random 
chromosome from current population will be selected. Then, 
one random row (one veretx) from the chromosome will be 
selected and will replace its values using a random 
probability number (0 < number < 1), see Fig. 4. Moreover, 
the sum of the values of each row is equal 1 (Eq. 5). 

b) Mutation in rows level: In order to acquire more 
variety in the population, we can using another type of 

(α, π ) 

(�i) 

(4) 

(3) 

(8) 
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mutation. We call it mutation in level of rows. After 
selection a chromosome randomly, two different random 
rows (vertices in our case) from the chromosome will be 
selected. Then, exchange corresponding values of them, see 
Fig. 5. This opreator is performed with probability Pmr. You 
can see the evolutionary algorithm toghther in the mixture 
algorithm [1] in Fig. 6. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

IV. RESULTS 

In this section, we apply the proposed method to two real 
networks to assess how well the method discovers node 
clusters. We consider the “karate club” network which 
studied in [10]. The network is a social network of 
friendships between 34 members of a karate club at a U.S 
university as it described by Wayne Zachary in 1977. The 
vertices of the network spread on four communities, it is 
made up of n = 34 vertices and the total number of edges is 
78, refer to [10-12] for more details.  

As the first experiment we applied the proposed method 
in this paper with MixNet compared their clustering results 
when only used MixNet. Table 1 shows  the method together 
with the MixNet make better fits than only using the MixNet. 
Generally, the number of vertices which clustered in correct 
clusters has increased using the GA. As you can see in the 
Table 1, in the karate club network, the clustering accuracy is 
0.6176 using proposed method while the accuracy is 0.4117 
only using MixNet. 

The best fitness of each generation in proposed GA3 has 
increased ascending order, Fig. 7. Moreover, the maximum 
likelihood of the MixNet model has got a 

                                                        
3Genetic Algorithm 

 
Figure 4. Mutation in row values level. Replace all values of 
row by using a random probability number which each value 
is a probability between 0 and 1. Also the sum of the values of 
each row is equal 1. 

 
Figure 1. Representing the chromosome with n vertices 
and q clusters. 

 
Figure 5. Mutation in rows level. Exchange corresponding 
values of two different random selected rows of the parent 
to produce the offspring. 

 
Figure 3. Two parts of each offspring after performed the 
crossover oprator. First two corresponding parts of the parents 
exchange to produce two offsprings. 

 
Figure 2. Two parts of each parent before performing the 
crossover oprator. Each two parts in same chromosome can 
be have non-equal size, however two corresponding parts in 
each chromosome must have the same size. In this figure 
Size(Part1 of Parent1) = Size (Part1 of Parent2), Size(Part2 
of Parent1) = Size (Part2 of Parent2). 
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TABLE I.  TO COMPARE CLUSTERING ACCURACY. AS YOU CAN 

SEE, OUR PROPOSED METHOD REACH BETTER RESULTS THAN THE 

ERDÖS–RÉNYI MIXTURE 

 
GA and Erdös–
Rényi mixture 

Erdös–Rényi 
mixture 

Number of 
Vertices 

Correct 
Clustered 

Correct 
Clustered 

34 21 14 

Accuracy 0.6176 0. 4117 

TABLE II.  AVERAGE OF COMPLETE AND INCOMPLETE 

LIKELIHOOD TOGETHER ENTROPY AVERAGE OF THE MIXTURE 

MODEL WHICH OBTAINED BY RUNNING THE ALGORITHM 100 TIMES 

ON KARATE-CLUB NETWORK. 

 
Erdös–Rényi 
mixture-GA 

Erdös–Rényi 
mixture-Random 

log -Complete -173.7508606 -180.1669568 

log -Incomplete -173.030522 -179.0590337 

log -Entropy -0.720338621 -1.107923149 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

significant improvement using our proposed GA, i.e. now the 
MixNet model make a better fit on the network, see Table 2. 

We have shown complete likelihood of the mixture 
model with running 100 times in Fig. 8. We have considered 
two methods, first one used GA and second one used the 
random methods to initial the parameters of the models. As 
you can see complete likelihood variations using GA is 
smoothly. 

 
Figure 7. The best fitness of each generation.The generations, 
bigger than 20, improving is less than 0.001at most. 

 
Figure 8. The Complete Likelihood of the mixture model with 100 
times runs. 

 
Figure 6. Proposed Evaloutionary Algorithm Pseudocode. 
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TABLE III.  AVERAGE OF COMPLETE AND INCOMPLETE LIKELIHOOD 

TOGETHER ENTROPY AVERAGE OF THE MIXTURE MODEL WHICH OBTAINED 

BY RUNNING THE ALGORITHM 100 TIMES ON DOLPHINS NETWORK. 

 
Erdös–Rényi 
mixture-GA 

Erdös–Rényi 
mixture-Random 

log -Complete -462.6148157 -473.1966331 

log -Incomplete -461.3496899 -471.965267 

log -Entropy -1.165125806 -1.23136613 

 
We apply the proposed method to other networks, such 

as “Dolphin social network”, which is an undirected social 
network of frequent associations between 62 dolphins in a 
community living off Doubtful Sound, New Zealand [13]. 
This graph includes 62 vertices and 159 edges. We acquired 
improvements in the results of the Erdös–Rényi mixture 
mode. You can see its results in Table 3. 

 
 

V. CONCLUSION 

As you notice in this paper a local optimization algorithm 
need suitable initial values for its parameters. The proposed 
evolutionary algorithm estimate initial values of the 
parameters of the Erdös–Rényi mixture model. This model 
classifies the vertices of a network. The proposed method 
tries to achieve better values from the values space. These 
resulted values can improve clustering accuracy of the 
model. In the feature, we plan to investigate Online 
clustering algorithms to find better clustering algorithms. 
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