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Abstract—Symmetric encryption of data using time-varying 
keys at base-station is proposed as an attractive and interesting 
method for broadcasting in wireless sensor networks since last 
time. In this paper, we have proposed a light-weight encryption 
scheme using time-varying at cost of delayed-verification. Main 
idea of the proposed model is that instead of using one key per 
each packet, we use one key per each given number of packets. 
However, a significant problem is that interference or 
disconnections may cause a receiver to miss broadcast packets 
and the dynamic keys contained therein, rendering it unable to 
participate in subsequent broadcasts. Hence, we improve our 
proposal by a patch-like loss-recovery scheme. At the end, we 
will discuss the security and performance aspects of our 
method.  

Keywords-Security; secure broadcast; time-varying keys; 
efficiency ; wireless sensor network 

I.  INTRODUCTION  
Wireless sensor networks use network broadcast in various 
applications such as software update and network 
management. A sensor can also send data to the base-station 
(BS), through unicast, and the BS in turn broadcasts it to all 
sensors. Security of message broadcasting is an important 
and basic worry, especially in scenarios that data are critical, 
such as military applications. It is easy to eavesdrop and 
inject false data in wireless sensor networks. Traditional 
solutions designed for point-to-point networks, cannot be 
directly applied in sensor networks [12]. 

Sensor networks have severe resource constraints and 
they might be combined of hundreds or thousands of nodes. 
Using a simple symmetric cryptographic approach has some 
problems, e.g., if a node is compromised and its key is 
revealed, the attacker can masquerade and sniff all network 
traffic. In contrast, using an asymmetric cryptographic 
mechanism is not suitable in sensor networks for the sake of 
high computational overhead. There is a need to a light-
weight time-varying scheme that satisfies most important 
security metrics. In a time-varying key cryptographic 
method broadcast messages are encrypted with different 
keys which make a chain of keys.  

In the typical time-varying key models, a hash function 
is used to generate keys chain. To build a keys chain, hash 
value of a seed is calculated more and more to generate an 
array of keys. This key is used to encrypt data in reverse 
order periodically. The last generated hash value is used as 

the first or root key, which is inserted into all sensor nodes 
in early stages of network deployment. In the first stage of 
communication, BS encrypts a new key with root-key and 
then broadcasts it to all nodes. Sensors would decrypt the 
received packet with root-key and extract new key from it, 
then they authenticate the new key by comparing its hash 
value with the root key. The next keys will be transmitted in 
the same manner. 

The problem with this method is that using a key for 
each packet, means tolerating communication overhead of 
one key and computation overhead of one hash function per 
any one packet. In our method proposed in this paper, we 
use only one key per any given number, as £, of packets. 

In fact, at this paper we are seeking a light-weight secure 
broadcast scheme along with ensuring source authenticity, 
confidentiality, DoS resistance and simplicity. We name the 
proposal as LWSB, which stands for Light-Weight Secure 
Broadcast.  

A. Assumptions  
Albeit our scheme is general for most communication 
networks, but for simplicity in discussion, we assume a 
single-hop wireless sensor networks. Such a network has a 
BS that can broadcast data directly to sensor nodes. Like 
most of the works in the field, we assume that the BS has 
enough computation and energy resources. If we pay more 
cost and equip nodes with Tamper-Resistant hardware such 
as Tamper Platform Module (TPM) [16], security of key 
materials in sensor node will be improved significantly. We 
assume the wireless channel is open and unsecure. In this 
channel, an adversary can eavesdrop; inject false data to the 
network and replay packets. 

B. Paper Organization  
The rest of this paper is organized as follows: Previous 
works will be described in section II. In section III we have 
proposed our solution. Fault-tolerance is discussed in 
section IV. In section V, we analyzed its performance. In 
addition, we discuss experimental results in this section. We 
conclude in the section VI and highlight once again the 
salient features of our scheme.  

II. PREVIOUS WORKS 
Albeit many works accomplished in asymmetric 
cryptography field such as [8], but for the sake of 
computational and energy consumption limitations, most 
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researches in sensor networks focus on symmetric 
cryptography [1,6]. In the following, we review some well-
known secure broadcast scheme in symmetric cryptography. 

One of the early protocols which are used for secure 
communication in sensor networks is TinySec [4]. In this 
method, the symmetric secret key that is used for 
cryptography is shared among all sensors in the network and 
has long lifetime. Although TinySec has good advantages 
and it is simple but it is unsecure. An attacker can 
potentially find the key over time. In addition, a 
compromised node can easily transmit forged messages. 
This protocol is vulnerable against replay attack also. 

MiniSec [7] operates in two modes, broadcast and 
unicast. This scheme is similar to TinySec except some 
modifications such as an extra counter to prevent replay 
attacks.  

µTesla [11] and X-TESLA [18] are used to broadcast 
authenticated data without considering confidentiality. 
Network-wide loose time synchronization, buffer space for 
buffering packets, and vulnerability against replay attacks in 
each interval are main defects of this scheme. 

Multi-level µTesla [5] is another scheme that is 
proposed to improve µTesla with simplified key distribution 
phase and uses multi-level keys. 

LEAP [17] uses a broadcast authentication protocol such 
as µTesla, which consequently has loose-time 
synchronization and delayed verification problems. 

In [15] the authors have proposed SOSJ (stands as 
acronym of author’s names) for confidential and secure 
broadcasting in wireless sensor networks with Time-varying 
keys. In this scheme, the BS generates a hash chain with 
successive hashing (RC5, SHA-1 or MD5 [3]) which starts 
from a seed value such as K (which we name it ܭெ for 
convenience). This chain is like ܭெ ,ெିଵܭ, … ௜ܭ, , …  ଴ܭ,ଵܭ,
where the key ܭ௜ିଵ is the hash value of the key ܭ௜. It is 
assumed that the keyܭ଴, which is the last key generated in 
the hash chain, is inserted in any sensor node securely in the 
network deployment phase or by Diffie-Hellamn protocol. 
In this protocol, a key is encrypted with a private key and 
would be decrypted with the same key. The (݅ + 1)௧௛ key 
will be inserted in the ݅௧௛ packet and the packet will be 
encrypted with the ݅௧௛ 	key and will be sent to all sensors.  In 
addition to have many advantages regarding security 
aspects, using one key for each packet, means tolerating 
communication overhead of one key and computation 
overhead of one hash function per any one packet. 

III. PROPOSED METHOD 
To create a broadcast session key between BS and any 
sensor, we insert an initial key as commitment in any sensor 
(this key is shared in all sensor nodes) securely. This key 
would be inserted, either in node manufacturing time or 
after network deployment, and can be updated over time. In 
our proposal, we use one key per any given number, as	£, of 
packets. The ݆௧௛ session key to decrypt the £ consecutive 
packets is a key which is received from BS in ݅௧௛ (	݅ = £ ×
	݆) packet. The key, ܭ௝ 	, is made in the BS in a hash chain 
similar to µTesla method. By successively hashing a seed 

value like ଷெܭ , we generate the sequence of keys as  
ெܭ ,	ெିଵܭ,	 … ௝ܭ, 	, …   in all sensors as	଴ܭ ଴. We insertܭ,	ଵܭ,
initial key and keep the rest keys in the BS (1	 ≤ 	݆	 ≤  .(ܯ	

Any sensor verifies authentication of new key,ܭ௝ 	, by 
checking if its hash value yields the previous key, ܭ௝ିଵ. A 
key in the key chain is transmitted from the BS to any 
sensor, per £ packet. The value £ is a fixed number greater 
than 0 which is calculated based on various conditions and 
environment parameters in network deployment phase. If 
we determine £ equal to	1, then the BS like in SOSJ must 
send a key with every packet which is not required in many 
delay-tolerant application.  

We have two message types. First type includes data and 
MAC, as Message Authentication Code, for authentication. 
Second type includes data and an encryption key, as ܭ௝ . The 
MAC value in type1 messages are made by	ܭ௝ . 

To inhibit forge message from sender and guarantee the 
source authentication, we first make (£-1) type 1 messages 
by ܭ௝ , as a key to encrypt them and making included MAC 
value. Then we broadcast them to the receivers. An attacker 
cannot forge the type1 messages, because are not aware 
about	ܭ௝ . Sender after broadcasting (£-1) type 1 messages; 
broadcast the corresponding type 2 messages which 
includeܭ௝ . 

In fact, we are using time varying keys instead of 
constant keys. To this purposed, we use reverse of a hash 
chain with long step. Which means, per a given number of 
encryption packets ( £  number), encryption keys will be 
updated, only one time. The sequence of encryption keys 
and corresponding broadcast packets are shown at below. 
The sequence of encryption keys: 

଴ܭ 	← ଵܭ			 ଶܭ		← ← ⋯ ← ெܭ
£ ିଵ

← ெܭ
£

. 

The sequence of broadcast packet: 

଴ܲ ← ଵܲ ← ⋯ ← £ܲ ← £ܲାଵ ← ⋯	← ெܲି£ାଵ ← ⋯ ← ெܲିଵ
← ெܲ . 

So key ܭಾ
£

 is used to broadcast 	£  consecutive broadcast 
packet, ெܲି£ାଵ ← ⋯ ← ெܲିଵ ← ெܲ , in our proposal.  

To inhibit replay attack among any £ consecutive 
packets which use same key to encryption/decryption, we 
use same counter in both sides, as sender and receiver.  

To reduce the effects of key compromising within a 
sensor’s memory (probably by physical intrusion) we 
suggest using a group rekeying method [9,10]. Any sensor 
should have a unique shared key with the BS (in addition to 
the broadcast key) that will be used for private conversation 
between the sensor and the BS. To repel or decrease effects 
of physical intrusion attack, when a node is compromised 
and this event is detected by the BS, in any way, the group 
rekeying protocol would be established (usually this event is 
discovered by neighbors of the compromised node and 
informed to the BS). This process removes compromised 
node from group and network conversations by transmitting 
new group keys (current encryption key) to all nodes except 
the compromised one.  
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This scheme inherits some attributes of asymmetric 
cryptographic methods, due to using asymmetry mechanism 
for authentication in hash chains. 

It is resistant against replay attacks, by using the counter. 
But TinySec is weak against replay attacks.   

Our scheme has enough resistant against overflow attack 
but the methods based on µTesla are vulnerable against it. 
Our method acts in a different way and is not based on time 
interval, delayed verification, and does not use buffer for 
this purposes.   

A.  Applications, Extensions and Generality 
Main point of our work, as a confidential authenticated 
broadcast, is a general method to provide confidential 
authenticated broadcast stream over channels. The LWSB 
may be used in other applications which use secure 
communication and secure broadcast as a separate building 
block. For example, LWSB may be used in secure routing 
[11,12] and multicast multimedia stream over channels. One 
of the best applications of our proposal is delay-tolerant 
networks, which use delay-tolerant applications. A delay 
and disruption-tolerant network, DTN, is an occasionally 
connected network that may suffer from frequent partitions 
and that may be comprised of more than one divergent set of 
protocols or protocol families. The DTN network is utilized 
in various operational environments, including those subject 
to disruption and disconnection and those with high-delay; 
the case of deep space is one specialized example of these, 
and is being pursued as a specialization of this architecture 
(see [24,25, RFC 4838] for more details). Other networks to 
which the DTN architecture applies includes sensor-based 
networks using scheduled intermittent connectivity, 
terrestrial wireless networks that cannot ordinarily maintain 
end-to-end connectivity, satellite networks with moderate 
delays and periodic connectivity, and underwater acoustic 
networks with moderate delays and frequent interruptions 
due to environmental factors [26].  

B. Generalization for unicast communication  
We can generalize the described method for unicast 
communication between BS and a sensor node. Its 
advantage versus broadcast model is, if one or some sensors 
are compromised, other sensors are still safe and secure. BS 
uses this communication model to transmit high confidential 
data to sensors.  

IV.    FAULT-TOLERANT LWSB 
We use a patch-like method to tolerate loss in our scheme 
that is inspired from [9]. The method is called PKB 
(Periodically Key Broadcast).  

Disrupting and losing packets containing a key will 
disturb our scheme and will make it unreliable (similar to 
the schemes that carry keys inside packets such as [15]). To 
build our method fault-tolerant and resistant against packet 
loss, we use PKB as follows. In PKB we use a master key 
 that is inserted into node in the network deployment (ெௌܭ)
time. In PKB the last encryption key (ܭ௝) that is sent by the 
BS is encrypted by ܭெௌ 	and is broadcasted into the network, 

periodically. We assume one out of ݎ packets containing the 
key, contains the recovery information.   

We want to show that extending LWSB by PKB with 
ratio ݎ would be more reliable. It means, the probability of a 
node to miss the key, in a long time, is near to zero. Before 
explaining the issues, we introduce some parameters as 
follows:  
    ݊: Number of recent keys which have not received yet, 
 ,Ratio of PKB packets to packets with the key :ݎ
௙ܲ௔௨௟௧ : Probability of missing a packet containing the 

encryption key  
ܲௐ்௄,௡ : Probability that a node has not received last n 
encryption keys  

The relation between the parameters is defined as: 

 ௐ்ܲ௄ ,௡ 	= 	 ( ௙ܲ௔௨௟௧)	௥	×	௡ 

With respect to practical values of the parameters, the value 
of ܲௐ்௄,௡ would be too small. For example if	݊ = ݐ݈ݑ݂ܽܲ	,5 =
1/2, and ݎ = 1 then  

 ௐ்ܲ௄ ,ହ(1/2)ଵ×ହ= 	0.03125 

Obviously we can assume that for ݊ > 5 , the value of  
ௐ்ܲ௄ ,௡ is near to zero and consequently PKB is reliable. 

A.   Overhead of PKB  
Because of the unlimited power assumption for BS, 
overhead on BS is not sensible and is tolerable. However, 
sensors would be affected more than BS because of their 
resource constraints. We calculate this overhead in the 
following. We show the length of encryption key and length 
of data portion as ܭ௟௘௡ 	and ܦ௟௘௡, respectively. With respect 
to practical values of the parameters as below:    

 £ݎ௟௘௡byteܭ௟௘௡byteܦ = 10 

We have: 

 ℎ݁ܽ݀௡௢ௗ௘ݎ݁ݒܱ = ×	ݎ	 ௟௘௡ܭ	 	/	(£ × ௟௘௡ܦ 	+ (௟௘௡ܭ	 	=
	8	/	166	 = 	0.0482	 

Having the above overhead on decryption cost and packet 
receiving cost, we guarantee reliability of our scheme with 
an acceptable approximation.  

For environments with rare packet loss, we decrease the 
overhead on sensor, BS, and communication channel by 
decreasing the value of ݎ. For example if we decrease ݎ with 
coefficient 5, then r will be 1/5 and we have: 

 ݁݀݋݊	ℎ݁ܽ݀ݎ݁ݒܱ = 	ݎ	 × 	 £)	/	݈݊݁ܭ × ݈݊݁ܦ 	+ (݈݊݁ܭ	 	=
	(1/5) 	× 	8	/	166	 = 	0.00964 

V .   PERFORMANCE EVALUATION 
To encrypt/decrypt packets with session keys and generating 
the MAC value of type 1 packet, we use RC5 for the sake of 
its high speed execution and admissible security. In addition 
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its optimized version has a good performance on 8 bit micro 
controllers [3,6,14]. To generate hash chain we use SHA-1 
as our hash function. We assume 16-byte key length and 4-
byte for MAC length. 

Here we would like to find a mathematical relation for 
average computation time of receiving, processing and 
preparing the next session key in the scheme as LWSB and 
SOSJ. The computation times for these two methods are 
called ୐ܶ୛ୗ୆, ୗܶ୓ୗ୎, respectively. The parameters that are 
used in relations, described as follows: 

௛ܶ:  Hash function execution time per byte, 
஽ܶ: Cryptographic function execution time that is used to 

decrypt received packet, per byte, 
£:   Network parameter, 
 ௅௘௡: Number of bytes of data portion of the receivedܦ

packet, 
 ௅௘௡: Number of bytes of key portion in the receivedܭ

packet, 
  ௅௘௡: Number of bytes of MAC portionܥܣܯ
ெܶ஺஼: Execution time to compute MAC value by RC5 

per byte, 
௅ܶௐௌ஻: Average computation time for any packet of the 

method LWSB, 
ୗܶ୓ୗ୎: Average computation time for any packet of the 

method SOSJ, 
Note that ௅ܶௐௌ஻  depends on different actions including the 
decryption of the received packet, calculation of the MAC 
value and calculation of the hash key (if included within the 
received packet). This value is calculated by the following 
formula:  

௅ܶௐௌ஻ = 	 ቀܦ௟௘௡ + ௄೗೐೙
£
ቁ	 ஽ܶ ௟௘௡ܥܣܯ+ ெܶ஺஼ 		+ 	 ቀ௄೗೐೙

£
ቁ	 ௛ܶ 

The computation time of the method SOSJ, ୗܶ୓ୗ୎, 
depends on the decryption time of the received packet, and 
the calculation time of the hash value which exists within 
the received packet:        

 ୗܶ୓ୗ୎ = 	 ௟௘௡ܦ) (௟௘௡ܭ+ ஽ܶ 	+ (௟௘௡ܭ)	 ௛ܶ 

By selecting proper values for the above parameters, we 
have compared LWSB (£ = 1, 5, 10, 20) against SOSJ for 
processing time required in a sensor node.  

 Like SOSJ and most works in the area we have selected 
SHA-1 as our hash function. We consider all conditions (for 
example node computational power and so on) as same as 
those in [3]. They have assumed 26 µs for encrypting one 
byte with RC5 and 122 µs for one byte hash value 
computation with SHA-1. With considering the above 
descriptions, we have: 

 ஽ܶ = ெܶ஺஼ = 26	µݏ 

 ௛ܶ = 122	µݏ 

With this description we have: 

 ௅ܶௐௌ஻	 = 	806 + 	1392/£			µݏ 

 ௌܶைௌ௃ 	= 	1782			µݏ 

Fig.1 compares ூܶௌ஻௎ and ୗܶ୓ୗ୎with respect to different 
values of £. Out of the 20 bytes generated by SHA-1, only 
the lower 16 bytes were used by RC5 for 
encryption/decryption. In our calculations we have ignored 
non-sensible times like increasing or decreasing a counter. 
 Therefore our method has clear efficiency in processing 
time. As Fig .1  shows, the processing time in our proposal 
for the case £ > 5 desired efficiency. Though methods like 
TinySec need less computation but they don’t have security 
of LWSB or SOSJ. For example, TinySec does not use 
reverse hash chain to repel packet forging. Consequently, 
they do not have hash function computation which is the 
expensive processing time in a sensor node. 
 LWSB does not have any problem in energy 
consumption aspects. Energy consumption in a node is due 
to sending and receiving data rather than computation. 
When sending and receiving, LWSB concatenates a 16-byte 
key to the data portion once per £ packets but in SOSJ for 
any one packet a key must be concatenated to the data. Thus 
for £ > 1, the amount of energy consumption in LWSB is 
less than SOSJ. In memory consumption, we only need the 
required memory for RC5 and SHA-1 primitives.  

A.  Experimental Results  
To evaluate network broadcast traffic, overhead on 
communication channel and memory overhead, we have 
prototyped LWSB and SOSJ on Tmote sky [22,2] to 
perform a real world scenario comparison. For ease of 
implementation, we have used available source codes from 
TESLA [ 27].  

The experiments are done on a PC (which runs Cygwin) 
as a BS which programmed by free cryptographic APIs 
from Bouncy Castle JCE provider [21]. Like [1,15], we did 
not prototype these two schemes as extension of Deluge in 
TinyOS, as our proposal is loss-tolerant and do not need 
reliability mechanism of Deluge [23]. In fact, we extended 
TinyOS standard packet for our prototypes. These schemes 
have been installed in Tmote [19]. 

 
Figure 1. Comparing average computation time for any packet in sensor 

for different schemes 
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These prototypes are implemented in a network 
comprised of 10 Tmote sky nodes (with MSP430 F1611 
microcontroller) [22] and a PC as a BS.  

In the experiments, we have used five programs to 
profile the time taken to update them and to measure 
memory usage. These five programs are Blink (6 KB), Pong 
(11 KB), TinyECC (23 KB), secure-Deluge (39 KB) and a 
sample program (50 KB). We have done each experiment 
several times and only considered consistent outputs 
disregarding error-bars.  

To conduct a comparison based on energy consumption, 
we have used power TOSSIM [20] on Mica-2, which is a 
well-known tool in WSNs. Since there is an exhaustive 
energy models for Mica-2 such as [20], we have evaluated 
the energy consumption analysis for Mica-2 in our work. 

We performed an experiment, to evaluate the time of 
upgrading a sensor node versus the size of information 
(broadcasted). In the two schemes, the upgrade time and the 
gap between any two curves is increased by increasing the 
updated information size. In fact, the latency in these 
schemes depends on the update size and is independent of 
number of nodes, as shown in Fig. 2. 

As it can be seen, latency in LWSB is a less than SOSJ, 
as discussed before. 

In our analysis, we evaluated energy consumption a 
node based on updated information size. We have used five 
programs to profile the energy consumption based on 
updated information size in the schemes (LWSB and SOSJ). 
These five programs, with different sizes, are Blink, Pong, 
TinyECC, secure-Deluge and a sample program. We have 
done each experiment several times and only considered 
consistent outputs disregarding error-bars.  

In this experiment, we compared the energy 
consumption of the schemes. In the schemes, any sensor 
receives packets independent of other sensors (despite 
multi-hop programming). In fact, there is a direct linear 
relation between energy consumption and size of updated 
information (Fig. 3). As it can be seen in the figure, energy 
consumption in LWSB is less than SOSJ, as discussed 
before.  

VI   CONCLUTION 
In this paper, we proposed a lightweight secure broadcast 
scheme. We have shown its efficiency on communication 
and computation overhead. Network broadcast schemes for 
wireless networks that use time-varying keys en/decryptions 
are susceptible to key loss due to wireless medium. Hence, 
we used a patch-like key loss recovery scheme. It is 
lightweight, secure, scales easily and is highly configurable. 
A receiver does not have to reveal its location by 
transmitting explicit key requests. It only listens to the BS to 
make its session keys. To evaluate security of the proposed 
scheme, we compared it with a number of famous schemes 
in the area, against some prevalent attacks in sensor 
networks. 
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