
A Light-Weight Secure Broadcast for delay-tolerant applications in Single-

Hop Wireless Sensor Networks

Hassan Nasiraee, Jamshid B. Mohasefi

Dept. of Computer Engineering
Urmia University

Urmia, Iran
hnasir20@gmail.com , j.bagherzadeh@urmia.ac.ir

Abstract—Symmetric encryption of data using time-varying
keys at base-station is proposed as an attractive and interesting
method for broadcasting in wireless sensor networks since last
time. In this paper, we have proposed a light-weight encryption
scheme using time-varying at cost of delayed-verification. Main
idea of the proposed model is that instead of using one key per
each packet, we use one key per each given number of packets.
However, a significant problem is that interference or
disconnections may cause a receiver to miss broadcast packets
and the dynamic keys contained therein, rendering it unable to
participate in subsequent broadcasts. Hence, we improve our
proposal by a patch-like loss-recovery scheme. At the end, we
will discuss the security and performance aspects of our
method.

Keywords-Security; secure broadcast; time-varying keys;
efficiency ; wireless sensor network

I. INTRODUCTION
Wireless sensor networks use network broadcast in various
applications such as software update and network
management. A sensor can also send data to the base-station
(BS), through unicast, and the BS in turn broadcasts it to all
sensors. Security of message broadcasting is an important
and basic worry, especially in scenarios that data are critical,
such as military applications. It is easy to eavesdrop and
inject false data in wireless sensor networks. Traditional
solutions designed for point-to-point networks, cannot be
directly applied in sensor networks [12].

Sensor networks have severe resource constraints and
they might be combined of hundreds or thousands of nodes.
Using a simple symmetric cryptographic approach has some
problems, e.g., if a node is compromised and its key is
revealed, the attacker can masquerade and sniff all network
traffic. In contrast, using an asymmetric cryptographic
mechanism is not suitable in sensor networks for the sake of
high computational overhead. There is a need to a light-
weight time-varying scheme that satisfies most important
security metrics. In a time-varying key cryptographic
method broadcast messages are encrypted with different
keys which make a chain of keys.

In the typical time-varying key models, a hash function
is used to generate keys chain. To build a keys chain, hash
value of a seed is calculated more and more to generate an
array of keys. This key is used to encrypt data in reverse
order periodically. The last generated hash value is used as

the first or root key, which is inserted into all sensor nodes
in early stages of network deployment. In the first stage of
communication, BS encrypts a new key with root-key and
then broadcasts it to all nodes. Sensors would decrypt the
received packet with root-key and extract new key from it,
then they authenticate the new key by comparing its hash
value with the root key. The next keys will be transmitted in
the same manner.

The problem with this method is that using a key for
each packet, means tolerating communication overhead of
one key and computation overhead of one hash function per
any one packet. In our method proposed in this paper, we
use only one key per any given number, as £, of packets.

In fact, at this paper we are seeking a light-weight secure
broadcast scheme along with ensuring source authenticity,
confidentiality, DoS resistance and simplicity. We name the
proposal as LWSB, which stands for Light-Weight Secure
Broadcast.

A. Assumptions
Albeit our scheme is general for most communication
networks, but for simplicity in discussion, we assume a
single-hop wireless sensor networks. Such a network has a
BS that can broadcast data directly to sensor nodes. Like
most of the works in the field, we assume that the BS has
enough computation and energy resources. If we pay more
cost and equip nodes with Tamper-Resistant hardware such
as Tamper Platform Module (TPM) [16], security of key
materials in sensor node will be improved significantly. We
assume the wireless channel is open and unsecure. In this
channel, an adversary can eavesdrop; inject false data to the
network and replay packets.

B. Paper Organization
The rest of this paper is organized as follows: Previous
works will be described in section II. In section III we have
proposed our solution. Fault-tolerance is discussed in
section IV. In section V, we analyzed its performance. In
addition, we discuss experimental results in this section. We
conclude in the section VI and highlight once again the
salient features of our scheme.

II. PREVIOUS WORKS
Albeit many works accomplished in asymmetric
cryptography field such as [8], but for the sake of
computational and energy consumption limitations, most

Archive of SID

www.SID.ir

http://www.sid.ir

researches in sensor networks focus on symmetric
cryptography [1,6]. In the following, we review some well-
known secure broadcast scheme in symmetric cryptography.

One of the early protocols which are used for secure
communication in sensor networks is TinySec [4]. In this
method, the symmetric secret key that is used for
cryptography is shared among all sensors in the network and
has long lifetime. Although TinySec has good advantages
and it is simple but it is unsecure. An attacker can
potentially find the key over time. In addition, a
compromised node can easily transmit forged messages.
This protocol is vulnerable against replay attack also.

MiniSec [7] operates in two modes, broadcast and
unicast. This scheme is similar to TinySec except some
modifications such as an extra counter to prevent replay
attacks.

µTesla [11] and X-TESLA [18] are used to broadcast
authenticated data without considering confidentiality.
Network-wide loose time synchronization, buffer space for
buffering packets, and vulnerability against replay attacks in
each interval are main defects of this scheme.

Multi-level µTesla [5] is another scheme that is
proposed to improve µTesla with simplified key distribution
phase and uses multi-level keys.

LEAP [17] uses a broadcast authentication protocol such
as µTesla, which consequently has loose-time
synchronization and delayed verification problems.

In [15] the authors have proposed SOSJ (stands as
acronym of author’s names) for confidential and secure
broadcasting in wireless sensor networks with Time-varying
keys. In this scheme, the BS generates a hash chain with
successive hashing (RC5, SHA-1 or MD5 [3]) which starts
from a seed value such as K (which we name it ܭெ for
convenience). This chain is like ܭெ ,ெିଵܭ, … ௜ܭ, , … ଴ܭ,ଵܭ,
where the key ܭ௜ିଵ is the hash value of the key ܭ௜. It is
assumed that the keyܭ଴, which is the last key generated in
the hash chain, is inserted in any sensor node securely in the
network deployment phase or by Diffie-Hellamn protocol.
In this protocol, a key is encrypted with a private key and
would be decrypted with the same key. The (݅ + 1)௧௛ key
will be inserted in the ݅௧௛ packet and the packet will be
encrypted with the ݅௧௛ 	key and will be sent to all sensors. In
addition to have many advantages regarding security
aspects, using one key for each packet, means tolerating
communication overhead of one key and computation
overhead of one hash function per any one packet.

III. PROPOSED METHOD
To create a broadcast session key between BS and any
sensor, we insert an initial key as commitment in any sensor
(this key is shared in all sensor nodes) securely. This key
would be inserted, either in node manufacturing time or
after network deployment, and can be updated over time. In
our proposal, we use one key per any given number, as	£, of
packets. The ݆௧௛ session key to decrypt the £ consecutive
packets is a key which is received from BS in ݅௧௛ (݅ = £ ×
	݆) packet. The key, ܭ௝ 	, is made in the BS in a hash chain
similar to µTesla method. By successively hashing a seed

value like ଷெܭ , we generate the sequence of keys as
ெܭ ,	ெିଵܭ,	 … ௝ܭ, 	, … in all sensors as	଴ܭ ଴. We insertܭ,	ଵܭ,
initial key and keep the rest keys in the BS (1	 ≤ 	݆	 ≤ .(ܯ	

Any sensor verifies authentication of new key,ܭ௝ 	, by
checking if its hash value yields the previous key, ܭ௝ିଵ. A
key in the key chain is transmitted from the BS to any
sensor, per £ packet. The value £ is a fixed number greater
than 0 which is calculated based on various conditions and
environment parameters in network deployment phase. If
we determine £ equal to	1, then the BS like in SOSJ must
send a key with every packet which is not required in many
delay-tolerant application.

We have two message types. First type includes data and
MAC, as Message Authentication Code, for authentication.
Second type includes data and an encryption key, as ܭ௝ . The
MAC value in type1 messages are made by	ܭ௝ .

To inhibit forge message from sender and guarantee the
source authentication, we first make (£-1) type 1 messages
by ܭ௝ , as a key to encrypt them and making included MAC
value. Then we broadcast them to the receivers. An attacker
cannot forge the type1 messages, because are not aware
about	ܭ௝ . Sender after broadcasting (£-1) type 1 messages;
broadcast the corresponding type 2 messages which
includeܭ௝ .

In fact, we are using time varying keys instead of
constant keys. To this purposed, we use reverse of a hash
chain with long step. Which means, per a given number of
encryption packets (£ number), encryption keys will be
updated, only one time. The sequence of encryption keys
and corresponding broadcast packets are shown at below.
The sequence of encryption keys:

଴ܭ 	← ଵܭ			 ଶܭ		← ← ⋯ ← ெܭ
£ ିଵ

← ெܭ
£

.

The sequence of broadcast packet:

଴ܲ ← ଵܲ ← ⋯ ← £ܲ ← £ܲାଵ ← ⋯	← ெܲି£ାଵ ← ⋯ ← ெܲିଵ
← ெܲ .

So key ܭಾ
£

 is used to broadcast 	£ consecutive broadcast
packet, ெܲି£ାଵ ← ⋯ ← ெܲିଵ ← ெܲ , in our proposal.

To inhibit replay attack among any £ consecutive
packets which use same key to encryption/decryption, we
use same counter in both sides, as sender and receiver.

To reduce the effects of key compromising within a
sensor’s memory (probably by physical intrusion) we
suggest using a group rekeying method [9,10]. Any sensor
should have a unique shared key with the BS (in addition to
the broadcast key) that will be used for private conversation
between the sensor and the BS. To repel or decrease effects
of physical intrusion attack, when a node is compromised
and this event is detected by the BS, in any way, the group
rekeying protocol would be established (usually this event is
discovered by neighbors of the compromised node and
informed to the BS). This process removes compromised
node from group and network conversations by transmitting
new group keys (current encryption key) to all nodes except
the compromised one.

Archive of SID

www.SID.ir

http://www.sid.ir

This scheme inherits some attributes of asymmetric
cryptographic methods, due to using asymmetry mechanism
for authentication in hash chains.

It is resistant against replay attacks, by using the counter.
But TinySec is weak against replay attacks.

Our scheme has enough resistant against overflow attack
but the methods based on µTesla are vulnerable against it.
Our method acts in a different way and is not based on time
interval, delayed verification, and does not use buffer for
this purposes.

A. Applications, Extensions and Generality
Main point of our work, as a confidential authenticated
broadcast, is a general method to provide confidential
authenticated broadcast stream over channels. The LWSB
may be used in other applications which use secure
communication and secure broadcast as a separate building
block. For example, LWSB may be used in secure routing
[11,12] and multicast multimedia stream over channels. One
of the best applications of our proposal is delay-tolerant
networks, which use delay-tolerant applications. A delay
and disruption-tolerant network, DTN, is an occasionally
connected network that may suffer from frequent partitions
and that may be comprised of more than one divergent set of
protocols or protocol families. The DTN network is utilized
in various operational environments, including those subject
to disruption and disconnection and those with high-delay;
the case of deep space is one specialized example of these,
and is being pursued as a specialization of this architecture
(see [24,25, RFC 4838] for more details). Other networks to
which the DTN architecture applies includes sensor-based
networks using scheduled intermittent connectivity,
terrestrial wireless networks that cannot ordinarily maintain
end-to-end connectivity, satellite networks with moderate
delays and periodic connectivity, and underwater acoustic
networks with moderate delays and frequent interruptions
due to environmental factors [26].

B. Generalization for unicast communication
We can generalize the described method for unicast
communication between BS and a sensor node. Its
advantage versus broadcast model is, if one or some sensors
are compromised, other sensors are still safe and secure. BS
uses this communication model to transmit high confidential
data to sensors.

IV. FAULT-TOLERANT LWSB
We use a patch-like method to tolerate loss in our scheme
that is inspired from [9]. The method is called PKB
(Periodically Key Broadcast).

Disrupting and losing packets containing a key will
disturb our scheme and will make it unreliable (similar to
the schemes that carry keys inside packets such as [15]). To
build our method fault-tolerant and resistant against packet
loss, we use PKB as follows. In PKB we use a master key
 that is inserted into node in the network deployment (ெௌܭ)
time. In PKB the last encryption key (ܭ௝) that is sent by the
BS is encrypted by ܭெௌ 	and is broadcasted into the network,

periodically. We assume one out of ݎ packets containing the
key, contains the recovery information.

We want to show that extending LWSB by PKB with
ratio ݎ would be more reliable. It means, the probability of a
node to miss the key, in a long time, is near to zero. Before
explaining the issues, we introduce some parameters as
follows:
 ݊: Number of recent keys which have not received yet,
 ,Ratio of PKB packets to packets with the key :ݎ
௙ܲ௔௨௟௧ : Probability of missing a packet containing the

encryption key
ܲௐ்௄,௡ : Probability that a node has not received last n
encryption keys

The relation between the parameters is defined as:

 ௐ்ܲ௄ ,௡ 	= 	 (௙ܲ௔௨௟௧)	௥	×	௡ 

With respect to practical values of the parameters, the value
of ܲௐ்௄,௡ would be too small. For example if	݊ = ݐ݈ݑ݂ܽܲ	,5 =
1/2, and ݎ = 1 then

 ௐ்ܲ௄ ,ହ(1/2)ଵ×ହ= 	0.03125 

Obviously we can assume that for ݊ > 5 , the value of
ௐ்ܲ௄ ,௡ is near to zero and consequently PKB is reliable.

A. Overhead of PKB
Because of the unlimited power assumption for BS,
overhead on BS is not sensible and is tolerable. However,
sensors would be affected more than BS because of their
resource constraints. We calculate this overhead in the
following. We show the length of encryption key and length
of data portion as ܭ௟௘௡ 	and ܦ௟௘௡, respectively. With respect
to practical values of the parameters as below:

 £ݎ௟௘௡byteܭ௟௘௡byteܦ = 10 

We have:

 ℎ݁ܽ݀௡௢ௗ௘ݎ݁ݒܱ = ×	ݎ	 ௟௘௡ܭ	 	/	(£ × ௟௘௡ܦ 	+ (௟௘௡ܭ	 	=
	8	/	166	 = 	0.0482	 

Having the above overhead on decryption cost and packet
receiving cost, we guarantee reliability of our scheme with
an acceptable approximation.

For environments with rare packet loss, we decrease the
overhead on sensor, BS, and communication channel by
decreasing the value of ݎ. For example if we decrease ݎ with
coefficient 5, then r will be 1/5 and we have:

 ݁݀݋݊	ℎ݁ܽ݀ݎ݁ݒܱ = 	ݎ	 × 	 £)	/	݈݊݁ܭ × ݈݊݁ܦ 	+ (݈݊݁ܭ	 	=
	(1/5) 	× 	8	/	166	 = 	0.00964 

V . PERFORMANCE EVALUATION
To encrypt/decrypt packets with session keys and generating
the MAC value of type 1 packet, we use RC5 for the sake of
its high speed execution and admissible security. In addition

Archive of SID

www.SID.ir

http://www.sid.ir

its optimized version has a good performance on 8 bit micro
controllers [3,6,14]. To generate hash chain we use SHA-1
as our hash function. We assume 16-byte key length and 4-
byte for MAC length.

Here we would like to find a mathematical relation for
average computation time of receiving, processing and
preparing the next session key in the scheme as LWSB and
SOSJ. The computation times for these two methods are
called ୐ܶ୛ୗ୆, ୗܶ୓ୗ୎, respectively. The parameters that are
used in relations, described as follows:

௛ܶ: Hash function execution time per byte,
஽ܶ: Cryptographic function execution time that is used to

decrypt received packet, per byte,
£: Network parameter,
 ௅௘௡: Number of bytes of data portion of the receivedܦ

packet,
 ௅௘௡: Number of bytes of key portion in the receivedܭ

packet,
 ௅௘௡: Number of bytes of MAC portionܥܣܯ
ெܶ஺஼: Execution time to compute MAC value by RC5

per byte,
௅ܶௐௌ஻: Average computation time for any packet of the

method LWSB,
ୗܶ୓ୗ୎: Average computation time for any packet of the

method SOSJ,
Note that ௅ܶௐௌ஻ depends on different actions including the
decryption of the received packet, calculation of the MAC
value and calculation of the hash key (if included within the
received packet). This value is calculated by the following
formula:

௅ܶௐௌ஻ = 	 ቀܦ௟௘௡ + ௄೗೐೙
£
ቁ	 ஽ܶ ௟௘௡ܥܣܯ+ ெܶ஺஼ 		+ 	 ቀ௄೗೐೙

£
ቁ	 ௛ܶ 

The computation time of the method SOSJ, ୗܶ୓ୗ୎,
depends on the decryption time of the received packet, and
the calculation time of the hash value which exists within
the received packet:

 ୗܶ୓ୗ୎ = 	 ௟௘௡ܦ) (௟௘௡ܭ+ ஽ܶ 	+ (௟௘௡ܭ)	 ௛ܶ 

By selecting proper values for the above parameters, we
have compared LWSB (£ = 1, 5, 10, 20) against SOSJ for
processing time required in a sensor node.

 Like SOSJ and most works in the area we have selected
SHA-1 as our hash function. We consider all conditions (for
example node computational power and so on) as same as
those in [3]. They have assumed 26 µs for encrypting one
byte with RC5 and 122 µs for one byte hash value
computation with SHA-1. With considering the above
descriptions, we have:

 ஽ܶ = ெܶ஺஼ = 26	µݏ 

 ௛ܶ = 122	µݏ 

With this description we have:

 ௅ܶௐௌ஻	 = 	806 + 	1392/£			µݏ 

 ௌܶைௌ௃ 	= 	1782			µݏ 

Fig.1 compares ூܶௌ஻௎ and ୗܶ୓ୗ୎with respect to different
values of £. Out of the 20 bytes generated by SHA-1, only
the lower 16 bytes were used by RC5 for
encryption/decryption. In our calculations we have ignored
non-sensible times like increasing or decreasing a counter.
 Therefore our method has clear efficiency in processing
time. As Fig .1 shows, the processing time in our proposal
for the case £ > 5 desired efficiency. Though methods like
TinySec need less computation but they don’t have security
of LWSB or SOSJ. For example, TinySec does not use
reverse hash chain to repel packet forging. Consequently,
they do not have hash function computation which is the
expensive processing time in a sensor node.
 LWSB does not have any problem in energy
consumption aspects. Energy consumption in a node is due
to sending and receiving data rather than computation.
When sending and receiving, LWSB concatenates a 16-byte
key to the data portion once per £ packets but in SOSJ for
any one packet a key must be concatenated to the data. Thus
for £ > 1, the amount of energy consumption in LWSB is
less than SOSJ. In memory consumption, we only need the
required memory for RC5 and SHA-1 primitives.

A. Experimental Results
To evaluate network broadcast traffic, overhead on
communication channel and memory overhead, we have
prototyped LWSB and SOSJ on Tmote sky [22,2] to
perform a real world scenario comparison. For ease of
implementation, we have used available source codes from
TESLA [27].

The experiments are done on a PC (which runs Cygwin)
as a BS which programmed by free cryptographic APIs
from Bouncy Castle JCE provider [21]. Like [1,15], we did
not prototype these two schemes as extension of Deluge in
TinyOS, as our proposal is loss-tolerant and do not need
reliability mechanism of Deluge [23]. In fact, we extended
TinyOS standard packet for our prototypes. These schemes
have been installed in Tmote [19].

Figure 1. Comparing average computation time for any packet in sensor

for different schemes

Archive of SID

www.SID.ir

http://www.sid.ir

These prototypes are implemented in a network
comprised of 10 Tmote sky nodes (with MSP430 F1611
microcontroller) [22] and a PC as a BS.

In the experiments, we have used five programs to
profile the time taken to update them and to measure
memory usage. These five programs are Blink (6 KB), Pong
(11 KB), TinyECC (23 KB), secure-Deluge (39 KB) and a
sample program (50 KB). We have done each experiment
several times and only considered consistent outputs
disregarding error-bars.

To conduct a comparison based on energy consumption,
we have used power TOSSIM [20] on Mica-2, which is a
well-known tool in WSNs. Since there is an exhaustive
energy models for Mica-2 such as [20], we have evaluated
the energy consumption analysis for Mica-2 in our work.

We performed an experiment, to evaluate the time of
upgrading a sensor node versus the size of information
(broadcasted). In the two schemes, the upgrade time and the
gap between any two curves is increased by increasing the
updated information size. In fact, the latency in these
schemes depends on the update size and is independent of
number of nodes, as shown in Fig. 2.

As it can be seen, latency in LWSB is a less than SOSJ,
as discussed before.

In our analysis, we evaluated energy consumption a
node based on updated information size. We have used five
programs to profile the energy consumption based on
updated information size in the schemes (LWSB and SOSJ).
These five programs, with different sizes, are Blink, Pong,
TinyECC, secure-Deluge and a sample program. We have
done each experiment several times and only considered
consistent outputs disregarding error-bars.

In this experiment, we compared the energy
consumption of the schemes. In the schemes, any sensor
receives packets independent of other sensors (despite
multi-hop programming). In fact, there is a direct linear
relation between energy consumption and size of updated
information (Fig. 3). As it can be seen in the figure, energy
consumption in LWSB is less than SOSJ, as discussed
before.

VI CONCLUTION
In this paper, we proposed a lightweight secure broadcast
scheme. We have shown its efficiency on communication
and computation overhead. Network broadcast schemes for
wireless networks that use time-varying keys en/decryptions
are susceptible to key loss due to wireless medium. Hence,
we used a patch-like key loss recovery scheme. It is
lightweight, secure, scales easily and is highly configurable.
A receiver does not have to reveal its location by
transmitting explicit key requests. It only listens to the BS to
make its session keys. To evaluate security of the proposed
scheme, we compared it with a number of famous schemes
in the area, against some prevalent attacks in sensor
networks.

REFERENCES
[1] S. T. Ali, V. Sivaraman, A. Dhamdhere, D. Ostry, “Secure key loss

recovery for network broadcast in single-hop wireless sensor
networks,” Ad Hoc Networks, vol. 8, no. 6, pp. 668-679, Aug 2010.

[2] Crossbow Technologies, Mica2 and MicaZ motes,
<http://www.xbow.com>.

[3] P. Ganesan, R. Venugopalan, P. Peddabachagari, A. Dean, F.Mueller,
M. Sichitiu. “Analyzing and Modeling Encryption Overhead for
Sensor Network Nodes”. In: WSNA‘03, San Diego, USA, September
2003.

[4] C. Karlof, N. Sastry, D. Wagner, “TinySec: a link layer security
architecture for wireless sensor networks,” In: SenSys’04,
ACM,Baltimore, Maryland, November 2004.

[5] D. Liu, P. Ning, “Multilevel µTesla: broadcast authentication for
distributed sensor networks,” ACM Transactions on Embedded
Computing Systems 3 (4) (2004) 800–836.

[6] J.Lopez , J.Zhou ,WIRELESS SENSOR NETWORK SECURITY ,
Ebook, IOS Press, 2008

[7] M. Luk, G. Mezzour, A. Perrig, V. Gligor, “MiniSec: A secure sensor
network communication architecture,” in: International Conference
on Information Processing in Sensor Networks, ACM/IEEE,
Cambridge, Massachusetts, April 2007.

[8] Sk.Md. M. Rahman,K. El-Khatib , “Private key agreement and secure
communication for heterogeneous sensor networks “, J. Parallel
Distrib. Comput. 70, pp. 858-870, 2010 .

[9] D. Naor, M. Naor, and J. Lotspiech. “Revocation and tracing schemes
for stateless receivers.” In Advances in Cryptology - CRYPTO 2001.
Lecture Notes in Computer Science, vol. 2139. 41–62. 2001

Figure 2. Latency comparison for upgrade in different schemes

Figure 3. Energy consumption comparison in different schemes to update

a sample program (25 KB)

Archive of SID

www.SID.ir

http://www.sid.ir

[10] A. Perrig, D. Song, and D. Tygar. “Elk, a new protocol for efficient
large-group key distribution”. In Proc. of IEEE Symposium on
Security and Privacy. 2001.

[11] A. Perrig, R. Szewczyk, V. Wen, D. Culler, J.D. Tygar, “SPINS:
security protocols for wireless sensor networks,” in: Mobile
Computing and Networking, ACM, Rome, Italy, 2001.

[12] A. Perrig and J. D. Tygar, “Secure Broadcast Communication in
Wired and Wireless Networks.” Kluwer Academic Publishers, 2002.

[13] D. R. Raymond and S. F. Midkiff, "Denial-of- Sevice in Wireless
Sensor Networks: Attacks and Defenses," IEEE Pervasive
Computing, vol. 7, no. 1,pp. 74-81, 2008.

[14] R. Rivest, “The RC5 encryption algorithm,” in: Proceedings of
Workshop on Fast Software Encryption, pp. 86–96, 1994.

[15] J. Shaheen, D. Ostry, V. Sivaraman, S. Jha, “Confidential and secure
broadcast in wireless sensor networks”, in: IEEE International
Symposium for Personal, Indoor and Mobile Radio Communications,
PIMRC, Athens, September 2007.

[16] Trusted Computing Group, Trusted Platform Module Specifications,
<http://www.trustedcomputinggroup.org/specs/TPM/>.

[17] S. Zhu, S. Setia, S. Jadojia, “LEAP: efficient security mechanisms for
large-scale distributed sensor networks,” in: CCS’03, ACM,
Washington, DC, October 2003.

[18] T. Kwon and J. Hong, "Secure and Efficient Broadcast
Authentication in Wireless Sensor Networks，" Computers，
IEEE Transactions on， vol. 59，no. 8, pp. 1120-1133, Aug 2010.

[19] “Telosb-Telosb Mote Platform,” http://www.willow.co.uk/
TelosB_Datasheet.pdf, Sept. 2010.

[20] V. Shnayder, M. Hempstead, B.-R. Chen, G.W. Allen, and M.Welsh,
“Simulating the Power Consumption of Large-Scale Sensor Network
Applications,” Proc. Int’l Source Conf. Embedded Networked Sensor
Systems (SenSys ’04), pp. 188-200, 2004.

[21] Bouncy Castle Crypto Apis, http://www.bouncycastle.org, 2010.
[22] Tmote Sky, “Ultra Low Power IEEE 802.15.4 Compliant

WirelessSensor Module Humidity, Light, and Temperature Sensors
with USB,” http://www.moteiv.com/products/docs/tmote-sky-data
sheet.pdf, Aug. 2007.

[23] J. Hui, D. Culler, “The dynamic behavior of a data dissemination
protocol for network programming at scale,” in: SenSys,
ACM,Baltimore, Maryland, 2004.

[24] S. Burleigh, et al., "Delay-Tolerant Networking - An Approach to
Interplanetary Internet", IEEE Communications Magazine, July 2003.

[25] InterPlaNetary Internet Project, Internet Society IPN Special Interest
Group, http://www.ipnsig.org.

[26] F. Warthman, "Delay-Tolerant Networks (DTNs): A Tutorial v1.1",
Wartham Associates, 2003. A vailable from http://www.dtnrg.org.

[27] A. Perrig, R. Canetti, D. Song, and D. Tygar, “Efficient
Authentication and Signing of Multicast Streams over Lossy
Channels,”In:Proc. IEEE Security and Privacy Symp., Mar. 2000.

Archive of SID

www.SID.ir

http://www.sid.ir

