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Abstract— A new stable Adaptive Interval Type-2 Fuzzy 
Proportional Integral Sliding Mode Controller (AI2FPISMC) 
is introduced here to control a class of nonlinear systems. The 
proposed method is based on interval type-2 fuzzy logic system 
(IT2FLS) whose antecedent and consequent membership 
functions are interval type-2 fuzzy sets. IT2FLS is utilized to 
approximate unknown nonlinear functions. To achieve high 
performance, optimizing membership functions (MFs) of 
interval type-2 fuzzy sets (IT2FS) is required. Genetic 
algorithm (GA) is a parallel search optimization method; that 
here contributes to optimize the MFs. In order to cope with the 
chattering of sliding mode controller, PI control law is 
proposed and Lyapunov analysis is utilized to prove 
asymptotic stability of the proposed approach. The adaptation 
laws are derived using Lyapunov approach. Two nonlinear 
system simulation examples are presented to verify the 
effectiveness of the proposed method, and their results confirm 
the optimization merits. 

Keywords- Proportional Integral (PI), Adaptive interval type-
2 fuzzy sliding mode, Uncertain nonlinear systems, Interval type-
2 fuzzy set (IT2FS), Interval type-2 fuzzy logic system (IT2FLS). 

I.  INTRODUCTION 
Recently, nonlinear control, in the presence of 

uncertainties, is a wide research area. Generally there are two 
kinds of uncertainties, one caused by lack of information 
about structure and parameters of a system and the other 
caused by internal and external disturbances and noises. 
Uncertainties in plant dynamics can be addressed via Sliding 
Mode Control (SMC) which is a robust nonlinear 
discontinuous feedback control technique, with the drawback 
of chattering [1].  The chattering is the main drawback of 
SMC, which can excite undesirable high-frequency 
dynamics. To reduce chattering phenomenon, a small 
boundary layer is introduced around the sliding surface. 
However, the state trajectory of the resulting system  may 
not converge on a narrow bound around to the sliding 
surface[1]. A way to eliminate chattering is to use a 
proportional integral (PI) control term [11] which is used in 
this paper. The other method which can handle uncertainty in 
plant dynamics is adaptive control. In adaptive control, an 
adaptation law is introduced that adjusts the parameters of 
the controller against system uncertainties and disturbances. 
It should be noted that adaptive control methods generally 
guarantee parameter convergence only if parameter changes 
are slow enough [2]. 

In the recent decades some techniques based on fuzzy 
logic systems (FLS) have been emerged for control of 
nonlinear systems [2-5]. Fuzzy logic provides a tool for 
using human expert knowledge in additional to mathematical 
knowledge. This is mainly useful for employing fuzzy 
knowledge-based control to deal with systems dynamic 
obscurities, conveniently non-modeled systems [1] or 
difficulties in dynamic mathematically analysis.  Quite often, 
the FLS rules construct information is uncertain [6, 7]. Type-
1 FLSs are unable to directly handle rule uncertainties, 
because their membership functions are type-1 fuzzy sets. In 
contrast, type-2 FLSs involved in this paper can handle rule 
uncertainties. Therefore, hybrid combinations of the SMC, 
type-2 fuzzy logic and adaptive control are an attractive 
approach for designing robust control systems with high 
degrees of nonlinearities and uncertainties. To improve 
performance, optimizing MFs of IT2FSs is required. One of 
the best optimization methods is GA that is a parallel search 
population based method.  

In this paper, we introduce an adaptive interval type-2 
fuzzy logic sliding mode control for a class of uncertain 
SISO nonlinear systems which was originally proposed in 
[8] to an adaptive sliding mode control based on type-1 fuzzy 
sets. We use IT2FLS to approximate the unknown nonlinear 
term which their antecedent and consequent sets are interval 
type-2 fuzzy sets. The proposed controller uses advantages 
of both IT2FLS and adaptive sliding mode controller to 
handle uncertainties and use PI term to eliminate chattering; 
Lyapunov synthesis is used to guarantees system asymptotic 
stability, and to achieve a good response, GA tunes the MFs 
of AIT2FPISMC. 

II. TYPE-2 FUZZY LOGIC SYSTEMS 
Generally an interval type-2 fuzzy set in universal set X 

is denoted as ܣሚ is characterized in following form:  

ሚܣ = ∫ ௫∈௑(ݔ)஺෨ߤ ݔ/ = ∫ [∫ ௨ఢ௃ೣݑ/1 ௫ఢ௑ݔ/[  ௫߳[0,1]         (1)ܬ   ,   

where ߤ஺෨(ݔ) is called a secondary MF and the domain of a 
secondary MF is called the primary membership of ݔ  is 
noted by ܬ௫. where ܬ௫߳[0,1] for  ∀	[0,1]߳ݑ ; ܺ߳ݔu is a fuzzy 
set.  
(IT2FSs) demonstrate an uniform uncertainty at the primary 
membership of	ݔ. Many researchers use this kind of type-2 
fuzzy sets because of their simplicity of calculation 
especially in the type reduction [9-11]. 
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FIGURE 2. Structure of an ITFLS FIGURE 1. Interval type-2 fuzzy MF 

An IT2FS ܣሚ  is described by its lower ߤ஺෨(ݔ)   and upper 
 membership functions. The Footprint of Uncertainty	(ݔ)஺෨ߤ
(FOU) for an IT2FS is described in terms of these MFs as  

FOU (ܣሚ)=⋃ [௫ఢ௑ ,(ݔ)஺෨ߤ  (2)             [(ݔ)஺෨ߤ

 Figure .1 shows a type-2 fuzzy MF with its FOU, upper and 
lower bounds.  Generally, an IT2FLS consists of fuzzifier; 
fuzzy rule base; fuzzy inference engine; type reducer and 
defuzzifier. Figure 2 shows the general structure of an 
IT2FLS. Type reducer block is main difference between 
type-1 and type-2 fuzzy logic systems. 
Since the output of the inference engine is a type-2 fuzzy 
set, its type must be reduced before defuzzification. Type 
reducer was first introduced by Karnik and Mendel [6, 12]. 
In [12] five different type reducers are described which are 
based on computing the centroid of an IT2FS. Center of sets 
type reducer can be expressed as: 

௖ܻ௢௦ =  ( ܻଵ ,…, ܻெ , ଵܨ ,…, ெܨ )= [ ௟ݕ , ௥ݕ ] 

=	∫ … ∫ ∫ …∫ 1/∑ ௙೔ಾ
೔సభ ௬೔

∑ ௙೔ಾ
೔సభ௙ಾ௙భ௬ಾ௬భ     (3) 

where   ݂ ௜߳ܨ௜ = [݂௜(ܺ), ݂
௜
௜ܻ߳௜ݕ ,		[(ܺ) = ௟௜ݕ] ,  .[௥௜ݕ

Whereas, in this paper we use IT2FS then ௖ܻ௢௦  is the interval 
set determined with its left end point, ݕ௟, and its right end 
point ݕ௥. We defuzzify the set obtained from type reducer 
by using the average of ݕ௟  and ݕ௥  [9], therefore we can 
obtain a crisp output: 
(ݔ)௟ݕ) =(ݔ)ݕ +  (4)                2/((ݔ)௥ݕ
In general, there are no closed form formula for computing 
௟ݕ   and ݕ௥ ; however Mendel and Karnik developed two 
algorithm for calculating these two end points in [13]. If we 
use singleton fuzzifier, product inference engine and COS 
type reducer  ݕ௟ and ݕ௥  can be illustrated as: 

=௟ݕ
∑ ௙೔௬೗

೔ಾ
೔సభ
∑ ௙೔ಾ
೔సభ

 ௟           (5)ߦ௟்ߠ = 

Where ߠ௟௜ = ௟௜ݕ  and  ߠ௟ = ,௟ଵߠ] … , =௟௜ߦ , ்[௟ெߠ
௙೔

∑ ௙೔ಾ
೔సభ

  and ߦ௟= 

,௟ଵߦ]  ்[௟ெߦ,…

=௥ݕ
∑ ௙೔௬ೝ೔ಾ
೔సభ
∑ ௙೔ಾ
೔సభ

 ௥            (6)ߦ௥்ߠ = 

Where ߠ௥௜ = ௥௜ݕ  and	ߠ௥ = ,௥ଵߠ] … , ்[௥ெߠ =௥௜ߦ , 
௙೔

∑ ௙೔ಾ
೔సభ

  and ߦ௥= 

,௥ଵߦ]  ்[௥ெߦ,…
Now the defuzzified crisp output obtain as: 

௬ೝା௬೗ = (ݔ)ݕ								
ଶ

 = ଵ
ଶ
௟ߦ௟்ߠ) +  ௥)         (7)ߦ௥்ߠ

III. SLIDING MODE CONTROL 
Consider a general class of SISO nonlinear system as  

,ݔ൫݂=(௡)ݔ  ൯ݐ + ݃൫ݔ, ݑ൯ݐ +  (8)                   (ݐ)݀
ݕ =   ݔ

Where ݂  and ݃  are unknown bounded nonlinear functions  
where the bounds need not be known, ݀(ݐ) is the unknown 
bounded external disturbance, ܴ߳ݑ and ܴ߳ݕ are input and 
output of the system, respectively, ݔ = ,ݔ] ,ݔ̇ … ,  ௡ܴ߳[(௡ିଵ)ݔ
is the state vector of the system which is assumed to be 
available for measurement. We have following assumptions: 
Assumption 1. We assume external disturbance ݀(ݐ)  is 
bounded by a known constant D, i.e. 
(ݐ)݀       ≤  (9)                                    ܦ
Assumption 2. System (8) is controllable, it 
means 	݃൫ݔ, ൯ݐ ≠ 0 . Without loss of generality, we 
assume	݃൫ݔ, ൯ݐ > 0, i.e. can be negative and the control can 
be similarly derived.  
The control objective is to determine a feedback control 
 of the system follows the desired ݔ such that the state (ݔ)ݑ
state vector ݔௗ = ௗݔ] , …,ௗݔ̇ , ௗݔ

(௡ିଵ)], therefore the tracking 
error is: 
       ݁ = ݔ − ௗݔ = [݁, ݁̇, … , ݁(௡ିଵ)]்      (10) 
Then a sliding surface in the space of the error state can be 
defined as 
൫݁൯ݏ = ்ܿ݁ = ݁(௡ିଵ) + ܿ௡ିଵ݁(௡ିଶ) +⋯+ ܿଵ݁     (11) 
where ܿ  are the coefficients of the Hurwitz 
polynomial	ℎ(ݎ) = (௡ିଵ)ߣ + ܿ(௡ିଵ)ߣ(௡ିଶ) +⋯+ ܿଵ , i.e. all 
the roots are in the open left-hand (ߣ is a Laplace operator). 
A sufficient condition for stability of the system controlled  
is given in [1] as: 

ݏ̇       ≤ ߟ           ,(ݏ)݊݃ݏߟ	− > 0       (12) 

By taking the time derivative of (11), we obtain:   

ݏ̇ = ∑ ܿ௜݁௜௡ିଵ
௜ୀଵ + (௡)ݔ − ௗݔ

(௡) = ∑ ܿ௜݁௜௡ିଵ
௜ୀଵ + ݂൫ݔ, ൯ݐ +

݃൫ݔ, ݑ൯ݐ + (ݐ)݀ − ௗݔ
(௡)        (13) 

Substituting (13) into (12), sliding condition can be re-
expressed as: 
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(∑ ܿ௜݁௜௡ିଵ
௜ୀଵ + ݂൫ݔ, ൯ݐ + ݃൫ݔ, ݑ൯ݐ + (ݐ)݀ − ௗݔ

(௡)) ≤
 (14)            (ݏ)݊݃ݏߟ	−

Therefore optimal control ݑ∗	is: 

∗ݑ = ଵ
௚൫௫,௧൯

ൣ−∑ ܿ௜݁௜௡ିଵ
௜ୀଵ − ݂൫ݔ, ൯ݐ − (ݐ)݀ + ௗݔ

(௡) −

 ൧            (15)(ݏ)݊݃ݏ∆ߟ

where	ߟ∆ ≥ ߟ > 0. 

IV. ADAPTIVE SLIDING MODE CONTROL BASED ON 
IT2FLS 

Since ൫ݔ, ,ݔ൯ , ݃൫ݐ  in (15) are unknown, we  (ݐ)݀ ൯ andݐ
replace ݂൫ݔ, ,ݔ݃൫	and	൯ݐ ൯ݐ  by the IT2FLS መ݂൫ߠ|ݔ௙൯  and 
ො݃൫ߠ|ݔ௚൯  which are in the form (7). Dou to the sliding 
control law (15) is discontinuous across the sliding surface 
s(t) and leads to chattering, we employ a PI control term to 
eliminate the chattering where PI controller is in the form 
of: 
 ܲ = ݏ௉ܭ + ூܭ ∫  ௣்߰൫z൯       (16)ߠ=ݐ݀ݏ
Where	ߠ௣ = ௉ܭ] ,  is an adjustable parameter vector, and	ூ]்ܭ
߰൫z൯ = [zଵ, zଶ] = [s, ∫ ୘[ݐ݀ݏ is a regressive vector. 
Therefore, around the sliding surface, control law is 
introduced as: 

௣൯ߠො௣൫zหݑ = ቊ	ݑොଵ = |ݏ|		݂݅																							௣்߰൫z൯ߠ < ߮
ොଶݑ = ܦ) + |ݏ|		݂݅					(ݏ)݊݃ݏ(∆ߟ ≥ ߮

�     (17) 

Where ߮  is the thickness of the boundary layer, D is 
obtained from (9). The resulting control input is: 
ݑ = ଵ

௚ො൫௫|ఏ೒൯	
ቂ−∑ ௜ܿ݁௜௡ିଵ

௜ୀଵ − መ݂൫ߠ|ݔ௙൯+ ௗݔ
(௡) −  ቃ        (18)(௣ߠ|z)ො௣ݑ

Where: 
መ݂൫ߠ|ݔ௙൯ =

௙መ೗ା௙መೝ
ଶ

= ଵ
ଶ
൫ߠ௙௟்ߦ௟ + ௙௥்ߠ ௥൯ߦ =  ௙          (19)ߦ௙்ߠ

 ො݃൫ߠ|ݔ௚൯ 	=
௚ො೗ା௚ොೝ
ଶ

= ଵ
ଶ
൫ߠ௚௟் ௟ߦ + ௚௥்ߠ ௥൯ߦ =  ௚              (20)ߦ௚்ߠ

Theorem1. Consider the nonlinear SISO system (8) and the 
control input u in (18), if the fuzzy based adaptive laws are 
chosen as: 
௙௟ߠ̇  ௙௟          (21)ߦݏଵߛ =
௙௥ߠ̇  ௙௥     (22)ߦݏଶߛ =
௚௟ߠ̇  (23)     ݑ௚௟ߦݏଷߛ =
௚௥ߠ̇  (24)     ݑ௚௥ߦݏସߛ =
௣ߠ̇  ൫z൯     (25)߰ݏହߛ =
The closed loop system signals will be bounded and the 
tracking error will converge to zero asymptotically. 
Proof . The optimal parameters of fuzzy systems are defined 
as:     
∗௙ߠ = arg݉݅݊ఏ೑ఢΩ೑

ൣsup௫ห መ݂൫ߠ|ݔ௙൯ − ݂൫ݔ,  ൯ห൧     (26)ݐ
∗௚ߠ = arg݉݅݊	ఏ೒ఢΩౝ[sup௫ | ො݃൫ߠ|ݔ௚൯ − ݃൫ݔ,  ൯|]    (27)ݐ
∗௣ߠ = arg 					݉݅݊ఏ೑ఢΩೞ[sup୸ (௣ߠ|z)ො௣ݑ| −    ොଶ|]    (28)ݑ
Where  Ω௙	 ,  Ω୥ and Ω௦ 	are defined as: 
 Ω௙ = ൛ߠ௙ܴ߳௡ห	หߠ௙ห ≤  }                     (29)	௙ܯ

 Ω୥ = ൛ߠ௚ܴ߳௡ห	0 < หߠ௚ห ≤         (30)	}	௚ܯ
	Ω୮ = ൛ߠ௣ܴ߳ଶห	0 < หߠ௣ห ≤                      (31)	}	௣ܯ
 where ܯ௙ , ܯ௚ and ܯ௣ are positive constant. We can define 
the minimum approximation error as:  
߱ = ൣ݂൫ݔ, ൯ݐ − መ݂൫ߠ|ݔ௙∗൯൧ + ൣ݃൫ݔ, ൯ݐ − ො݃൫ߠ|ݔ௚∗൯൧ݑ	(32)      
Then from substituting (18) and (32) into (13), derivative of 
sliding surface is: 

ݏ̇ = ෍ܿ௜݁௜
௡ିଵ

௜ୀଵ

+ ݂൫ݔ, ൯ݐ + ݃൫ݔ, ݑ൯ݐ + (ݐ)݀ − ௗݔ
(௡) 

= ݂൫ݔ, ൯ݐ − መ݂൫ߠ|ݔ௙൯ + ቀ݃൫ݔ, ൯ݐ − ො݃൫ߠ|ݔ௚൯ቁݑ + (ݐ)݀ −
  (௣ߠ|z)ො௣ݑ
= [ መ݂൫ߠ|ݔ௙∗൯ − መ݂൫ߠ|ݔ௙൯] + [ ො݃൫ߠ|ݔ௚∗൯ − ො݃൫ߠ|ݔ௚൯]ݑ + (ݐ)݀ +
௣∗൯ߠො௣൫zหݑ] − [௣൯ߠො௣൫zหݑ + ߱ −  (∗௣ߠ|z)ො௣ݑ
= ൫ߠ௙∗்ߦ௙ − ௙൯ߦ௙்ߠ + ൫ߠ௚∗்ߦ௚ − ݑ௚൯ߦ௚்ߠ + ൫ߠ௣∗்߰ − +௣்߰൯ߠ
(ݐ)݀ − +	(∗௣ߠ|z)ො௣ݑ ߱  

= ∅௙்ߦ௙ + ∅௚்ߦ௙ݑ + ∅௣்߰ + (ݐ)݀	 	− +	(∗௣ߠ|z)ො௣ݑ ߱ 

= ଵ
ଶ
(∅௙௟் ௙௟ߦ + ∅௙௥் (௙௥ߦ +

ଵ
ଶ
(∅௚௟் ௚௟ߦ + ∅௚௥் ݑ(௚௥ߦ + ∅௣்߰+

(ݐ)݀	 	− (∗௣ߠ|z)ො௣ݑ 	+ ߱         (33) 
Where ∅௙ = ∗௙ߠ − ௙ , ∅௚ߠ = ∗௚ߠ − ௚ߠ  and ∅௣ = ∗௣ߠ −  ௣ߠ
Now the Lyapunov function is defined as: 
ܸ = ଵ

ଶ
ଶݏ + ଵ

ସఊభ
∅௙௟் ∅௙௟ +

ଵ
ସఊమ

∅௙௥் ∅௙௥ +
ଵ
ସఊయ

∅௚௟் ∅௚௟ +
ଵ
ସఊర

∅௚௥் ∅௚௥ +
ଵ
ଶఊఱ

∅௣்∅௣       (34) 
Where ߛଵ ଶߛ,  , ଷߛ  ହ are positive constant. The timeߛ and	ସߛ, 
derivative of V is: 
ܸ̇ = ݏ̇ݏ + ଵ

ଶఊభ
∅௙௟் ∅̇௙௟ +

ଵ
ଶఊమ

∅௙௥் ∅̇௙௥ +
ଵ
ଶఊయ

∅௚௟் ∅̇௚௟ +
ଵ
ଶఊర

∅௚௥் ∅̇௚௥ +
ଵ
ఊఱ
∅௣்∅̇௣  

= ଵ)ݏ
ଶ
(∅௙௟் ௙௟ߦ + ∅௙௥் (௙௥ߦ +

ଵ
ଶ
(∅௚௟் ௚௟ߦ + ∅௚௥் ݑ(௚௥ߦ + ∅௣்߰+

(ݐ)݀	 	− (∗௣ߠ|z)ො௣ݑ 	+ ߱) +  
ଵ
ଶఊభ

∅௙௟் ∅̇௙௟ +
ଵ
ଶఊమ

∅௙௥் ∅̇௙௥ +
ଵ
ଶఊయ

∅௚௟் ∅̇௚௟ +
ଵ
ଶఊర

∅௚௥் ∅̇௚௥ +
ଵ
ఊఱ
∅௣்∅̇௣  

= ଵ
ଶఊభ

∅௙௟் ൫∅̇௙௟ + ௙௟൯ߦݏଵߛ +
ଵ
ଶఊమ

∅௙௥் ൫∅̇௙௥ + ௙௥൯ߦݏଶߛ +
ଵ
ଶఊయ

∅௚௟் ൫∅̇௚௟ +   ൯ݑ௚௟ߦݏଷߛ

+	 ଵ
ଶఊర

∅௚௥் ൫∅̇௚௥ + ൯ݑ௚௥ߦݏସߛ +
ଵ
ఊఱ
∅௣்൫∅̇௣ + +൯߰ݏହߛ (ݐ)݀ݏ −

௣∗൯ߠො௣൫zหݑ +   ߱ݏ
≤ ଵ

ଶఊభ
∅௙௟் ൫∅̇௙௟ + ௙௟൯ߦݏଵߛ +

ଵ
ଶఊమ

∅௙௥் ൫∅̇௙௥ + ௙௥൯ߦݏଶߛ +
ଵ
ଶఊయ

∅௚௟் ൫∅̇௚௟ + +൯ݑ௚௟ߦݏଷߛ
ଵ
ଶఊర

∅௚௥் ൫∅̇௚௥ + +൯ݑ௚௥ߦݏସߛ
ଵ
ఊఱ
∅௣்൫∅̇௣ + ൯߰ݏହߛ + (ݐ)݀ݏ − ∆ߟ)ݏ (ݏ)݊݃ݏ(ܦ+ +  (35)   ߱ݏ

where 	∅̇௙௥ = ,	௙௥ߠ̇− ∅̇௙௟ = ,	௙௟ߠ̇− ∅̇௚௥ = ∅̇௚௟		and	௚௥ߠ̇− =
௚௟ߠ̇−  , substituting (21)-(25) into (35), then we have:  
ܸ̇ = (ݐ)݀ݏ	 − ∆ߟ)ݏ (ݏ)݊݃ݏ(ܦ+ + ߱ݏ = (ݐ)݀ݏ −
∆ߟ)|ݏ| (ܦ+ + ߱ݏ ≤ (∆ߟ)|ݏ|− +  (36)     	߱ݏ
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to be  based on the approximation theorem [14], it can be 
anticipated that the term ߱ݏ should be very small if it not 
equals to zero in the IT-2 FLS, we obtain: 
ܸ̇ = (∆ߟ)|ݏ|− ≤ 0                            (37) 
Since ܿ = [ܿଵ, … , ܿ(௡ିଶ), ܿ(௡ିଵ), 1]் in which the ܿ௜’ݏ	 are all 
real and chosen such that ℎ(ߣ) = ∑ ܿ௜ߣ(௜ିଵ) ,௡

௜ୀଵ ܿ௡ = 1 is a 
Hurwitz polynomial, we have lim௧→∞ |(ݐ)݁| =0, therefore 
lim௧→∞ |(݁)ݏ| =0, then, the system is stable and the error 
will asymptotically converge to zero. the proof is 
completed.  

V. GENETIC ALGORITHM OPTIMIZATION PROCEDURE 
In this work, we propose using Genetic algorithm (GA) 

to optimize the membership functions of the interval type-2 
fuzzy logic system. GA was first introduced by Holland in 
1975 [20]. GA is a population based parallel search 
algorithm which is based on the mechanism of natural 
selection and natural genetics that operate without 
knowledge of the task domain and utilize only the fitness of 
evaluated individuals. In general, three basic operators of 
GA are reproduction, crossover and mutation. GA can be 
considered as a general purpose optimization method and 
has been successfully applied to search and optimization 
[26-29]. Here, Binary GA method is used as the aim of 
optimization as describe below. 

Optimization emphasized on the parameters of MFs. 
Let us consider  as a vector of parameters which we are 
going to optimize, so determined  contains standard 
division (ߜଵ௜, ଶ௜ߜ ), mean (݉௜) and amplitude of lower MF (

iAm ) (figure 1), it means

1 2[ , , , ] , 1, 2,...,i i i im Am i n    ,where n  is the number 
of MFs, so the number of parameters of   is quadruple of n.  

GA operates on chromosomes, which are binary 
strings, but the main problem must work out with real 
numbers, hence artificial genetic algorithm has two spaces, 
genotype and phenotype. Genotype, the space GA work on, 
consists in chromosomes and phenotype consists of real 
numbers; which each number decodes from one gene and 
vise versa. Here, each individual adjust the membership 
functions of the IT2FLS. The fitness of the related 
chromosome is evaluated by monitoring the overall mean 
squared error of that closed loop control system. Also the 
mutation and crossover operate on individuals of each 
generation and generate new child for constitute the new 
generations.  Some constraints are considered based on GA-
convergence speed: 

C1: 1 20.01 2 , 1,2,...,i i i n      
C2: 1 23 3... nmm m       
C3: 0.1< amplitudes of lower MFs ( iAm )<1 

       For tuning the GA parameters we determined the detail 
as below table1: 
 

Table1 : GA’s characteristics: 
character Value 

Max number of generation 400 

Population in each generation 40 

Probability of crossover (Pc) 0.6 

probability of mutation (Pm) 0.4 

 
In next section we apply the optimized MFs and uniform 
MFs for two nonlinear systems to verify the advantages of 
the optimization procedure.   

VI. SIMULATION EXAMPLES 
In this section, we want to apply our proposed adaptive 

sliding mode controller for two examples. The first example 
is a regulation problem to let the output of a first order 
nonlinear system to track a constant trajectory. The second 
example is to let a Duffing forced oscillation system to track 
a sin-wave trajectory. 

Example 1. Consider a first order system as follow  
ݔ̇ = ଵି௘షೣ

ଵା௘ೣ
+ (ݐ)ݑ + (ݐ)݀   ,(ݐ)݀ = cos	(3ݐ)+(38)   4 

Where (ݐ)ݑ is the input control signal and ݀(ݐ) is a bounded 
disturbance with known bound D=6. Assume ௉(0)ܭ	 =
100	, ூ(0)ܭ = 80 , ∆ߟ	 = 0.5	,߮ = 0.2   and The desired 
trajectory is 	ݔௗ = 0 . We use GA to optimize three MFs 
over interval [-3,3] where each MF has 4 parameters, it 
means each individual has 12 adjustable parameters. Table 2 
shoes parameters of optimized MFs. 
 
Table 2: Optimized Parameters  
Parameter 

N  Z  P  

m  -2.87 -0.44 0.04 

1 2[ , ]   [0.1  , 0.1 ] [0.17   , 0.17  ] [  0.01 ,  0.01 ] 

Am  0.76 0.74 1 
 
 The initial consequent parameters ߠ௙௟(0)  and ߠ௙௥(0)  are 
chosen uniformly over interval [0.1, 2] and [0.6, 2.5], 
respectively. Let the learning rate  ߛଵ = 50, ଶߛ = 60 and 
ହߛ = 10 . The results are simulated for the initial state 
(0)ݔ = 1.5 and step size 0.01.  

Figure 3 (a) shows the system response, and compare 
AIT2FPISMC based on uniform MFs and Optimized MFS. 
Simulation results show effectiveness of optimized method. 
From Figure 3 (b) it can be seen that the Integral squared 
error (ISE) of the optimized AIT2FPISMC is less than 
uniform one.  
      Example 2. Consider the Duffing forced-oscillation 
system in the form of 

1 2
3

2 2 10.1 12 ( ) ( ) ( )
( ) 5 (4 )

x x
x x x cos t u t d t
d t cos t



     




  

Archive of SID

www.SID.ir

http://www.sid.ir


Table 3: Optimized Parameters  
Parameter ( 1)N x           ( 1)Z x  ( 1)P x  ( 2)N x  ( 2)Z x  ( 2)P x  

m  -2.31                   0 2.2 -0.79 3 3 

1 2[ , ]   [0.5, 0.5 ]     [0.44 , 0.44  ] [ 0.35 ,  0.35 ] [1.4,1.4] [0.01,0.01] [0.07,0.07] 

Am  0.77           0.25 0.22         0.84 0.26 0.94 
 
where ݀(ݐ)	is an unknown disturbance with known bound 
D=7. The desired trajectory is 	ݔௗ = sin	(ݐ) and we assume 
௉(0)ܭ = 40	, ூ(0)ܭ = 20	, ∆ߟ = 0.2		and	߮ = 0.5	.  Three 
membership functions for each of the system states ݔଵ and 
ଶݔ  are chosen as in table 3, then there are 9 rules to 
approximate the system function 	݂ . Figure 4 show the 
optimized MFs. The initial consequent parameters ߠ௙௟(0) 
and ߠ௙௥(0) are chosen uniformly over interval [-2, 2] and [-
1.9, 2.1], respectively. Let the learning rate  ߛଵ = 10	, ଶߛ =
ହߛ ,20 = 10. Choose the sliding surface as	ݏ = ݁̇ + 5݁. The 
results are simulated for the initial states ଵ(0)ݔ	 = 2 
ଶ(0)ݔ	, = 2 and step size 0.01. 
Figure 5 shows the system response for the AFPISMC. 
Based on the simulation results it can be seen that the 
proposed controller achieves a good performance and using 
GA optimization is helpful to improve the performance.  

VII. CONCLUSIONS 
In this paper an adaptive interval type-2 fuzzy PI sliding 
mode controller for a class of nonlinear systems is designed. 
We used an interval type-2 fuzzy logic system to 
approximate the unknown nonlinear terms. Chattering 
problem is undesirable in most SMC applications; to 
eliminating this phenomenon a PI term is used near the 
sliding surface. To prove asymptotic stability of the 
proposed controller, Lyapunov analysis is used. The 
simulation results confirm the controller high performance 
and system stability. Also it is seen that the performance is 
improved using GA. 
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Figure 5. (a) Desired output (dot), Output for optimized MFs (solid) and 

uniform MFs (dashed); (b)The tracking performance ∫ ݁ଶହ
௧ୀ଴  for	ݐ݀

optimized MFs (solid) and uniform MFs (dashed). 
 

Figure 4. Optimized MFs. 
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