
A Semantic Web Based Approach for Design Pattern Detection from Source Code

Samad Paydar, Mohsen Kahani
Web Technology Lab., Dept. of Computer Engineering

Ferdowsi University of Mashhad
Mashhad, Iran

samad.paydar@stu-mail.um.ac.ir, kahani@um.ac.ir

Abstract—Design patterns provide experience reusability and
increase quality of object oriented designs. Knowing which
design patterns are implemented in a software is important in
comprehending, maintaining and refactoring its design.
However, despite the interest in using design patterns,
traditionally, their usage is not explicitly documented.
Therefore, a method is required to reveal this information
from some artifacts of the systems (e.g. source codes, models,
and executables). In this paper, an approach is proposed which
uses the Semantic Web technologies for automatically
detecting design patterns from Java source code. It is based on
the semantic data model as the internal representation, and on
SPARQL query execution as the analysis mechanism.
Experimental evaluations demonstrate that this approach is
both feasible and effective, and it reduces the complexity of
detecting design patterns to creating a set of SPARQL queries.

Keywords-design pattern; semantic web, source code,
ontology, software analysis

I. INTRODUCTION

Design patterns describe common solutions for common
design problems, and provide experience-reusability in the
context of object oriented design. They lead to the
development of more reliable, reusable, maintainable and
comprehensible designs. Since their successful description
and categorization in [8], they have attracted great attention
in the domain of object oriented development.

Despite the interest in using design patterns, in most
cases, their usage is not explicitly documented. Explicit
specification of this information is important in
comprehending, maintaining and refactoring an existing
design. Different approaches have been presented for
detecting the design patterns implemented in an existing
design [9], [11].

Recently, the Semantic Web technologies (e.g. RDF and
Ontologies) have been extensively used in the knowledge
engineering domain. They make it possible to represent
knowledge of a certain domain in a machine-processable
format, and enable machines to provide more support for
humans involved in the domain. In software engineering
domain, the Semantic Web technologies have been used for
different tasks [26] like software testing [27], software
product line management [28], component selection [14],
and configuration management [25].

This paper proposes a Semantic Web based approach for
detecting design patterns from Java source code. The main
elements of the approach are: an ontological representation
of source code information, and a query-based mechanism
for accessing and analyzing this information. Despite its
simplicity, the experimental results demonstrate that the
proposed approach can effectively reduces the cost and
complexity of the design pattern detection task.

The rest of the paper is organized as follows: In
Section II the related works are briefly reviewed. Section III
describes the proposed approach. The experimental
evaluations are discussed in Section IV. Finally, Section V
concludes the paper.

II. RELATED WORK

Binkley [24] describes source code analysis as a process
in which information of a program is automatically extracted
from its source code or from another artifact which is
generated from source code. He identifies three main
components for source code analysis: “the parser, the
internal representation, and the analysis of this
representation”.

This paper deals with design pattern detection from
source code, which is a source code analysis task. Therefore,
it is interesting to discuss the related works in terms of the 3-
component theoretical space proposed by Binkley [24].

A. Design pattern detection

Here, some of the works on detecting design patterns
from source code are briefly described. A more
comprehensive review of related methods is presented
in [23].

Generally, there is a parser component in these methods
which reads the source code and transforms it into a specific
internal representation. Then, the analysis is performed by
executing a special search method which checks the internal
representation against a set of pre-defined descriptions of
patterns.

In [1], the entry/exit listing of the object invocations is
used as the internal representation to represent the extracted
execution traces. Further, dynamic analysis techniques are
employed to analyze the internal representation and find the
patterns. Pattern Description Language (PDL) is used for
specifying the design pattern descriptions.

Archive of SID

www.SID.ir

http://www.sid.ir

DP-Miner [9] uses XML format as the internal
representation, and the analysis is performed by a procedure
which processes the matrices generated from the internal
representation to find pattern instances.

In [12], a special type of graph called Refactoring Pattern
(ReP) Graph is used as the internal representation and the
analysis is performed in terms of a particular inference over
the ReP graphs.

Tsantalis et al. [2] propose an approach which uses a
matrix-based internal representation for storing inter-class
relations of the input software. Design patterns are then
detected by specialized similarity measurement between
matrices of the input software and those of the design
patterns descriptions.

A disadvantage of these methods, from the point of view
of source code analysis, is that generally the internal
representation and the analysis mechanism are both tailor-
made for the specific task of design pattern detection, and
they cannot be effectively reused for another task, i.e. code
smell detection from source code. Further, these works are
mostly based on a black-box view, since the logic of the
analysis is hardcoded in a tool. This makes it hard to
understand, verify and modify the detection mechanism.

B. Semantic Web Enabled Software Engineering

There are some works on utilizing the Semantic Web
technologies to access or integrate information of different
software artifacts [26]. Hartig et al. [14] address the problem
of component selection in component-based software
development. Their automated approach is based on using an
ontology for describing software components and their
dependencies. Having a repository that contains ontological
descriptions of different components, they provide an
algorithm for finding the best solution for the component
search problem.

Alnusair and Zhao [15] similarly address the component
search problem by developing some ontologies for
describing source code elements and components. They
provide different search methods (e.g. signature-based,
keyword search) which utilize SPARQL query execution on
the background.

Schueger et al. [16] present an approach which employs
NLP techniques and a number of heuristics to automatically
estimate quality attributes (e.g. certainty and reproducibility)
of bug reports. Information of bug reports and their qualities
are then represented using an ontology. As a result, it is
possible to use SPARQL queries for searching over bug
reports based on their quality attributes.

Durao et al. [17] presents an ontology-based approach for
source code search. It uses ontologies and classification
techniques to classify source code into different domain
categories (e.g. GUI, IO, and Network). It also provides a
semantic search facility for searching stored source code. A
similar approach for semantic search over source code is
presented by Keivanloo et al. [18].

Tappolet [19] presents a discussion and roadmap towards
using ontologies for creating a general framework to tackle
with three problems of effective software analysis: data

representation, inter- and intra-project repository integration.
Ideas mentioned in [19] are realized in [13] and [20].

The most similar work to the current paper is presented
by Tappolet et al. [20], which is the extended version of [13].
In [20] the potential applications of the semantic web for
software analysis is discussed. Their proposal includes a set
of ontologies for representing source code, bug tracking and
version control systems. In addition, they discuss the
possibility of using iSPARQL [20] and SPARQL-ML [22]
for implementing software analysis tasks in terms of queries.

They report experiments on using their proposed
approach for five software analysis tasks: software evolution
analysis, computing source code metrics, detection of code
smells, defect and evolution density, and bug prediction.

Although the work of this paper has similarities
with [20], it is different in the sense that, first, it evaluates a
new task which is not considered in [20], i.e. design pattern
detection. Second, while Tappolet et al. [20] evaluate
applicability of their approach, this work evaluates also its
effectiveness, by comparing it with another existing
approach. Such a comparison is not considered by Tappolet
et al [20]. Finally, this work doesn’t have the limitation
of [20], since it covers statement-level information of the
source code, and generates much richer representations.

III. PROPOSED APPROACH

With regard to the Binkley’s model [24], the proposed
approach uses the RDFizer as the parser, the semantic data
model as the internal representation, and SPARQL query
execution as the analysis component.

The RDFizer parses the source code to gather interesting
information, and represents this information using an
ontology which describes different concepts of Java source
code along with their relations to each other. The resulting
RDF specification is stored in a repository which provides a
facility for executing SPARQL queries on the stored RDF
triples. The analysis task is performed through executing
appropriate queries on the repository.

The main difference of the proposed approach with other
design pattern detection methods is that it is based on the
semantic data model. This data model has some advantages
over ad-hoc formats (e.g. matrix-based representation):

1. RDF [3], along with RDFS [4] and OWL [5] provide an
expressive data model based on description logic,
powerful enough to clearly express instance data (ABox)
and schema structure (TBox). In other words, both the
data and the metadata are uniformly represented [6].

2. Well-defined semantics and formalism of these languages
provides ontological reasoning and inference
capabilities [6]. This capability is not inherently provided
by other data models, e.g. relational data model, and
therefore it must be implemented in the application layer.

3. Data is totally decoupled from the application logic that
processes it. Therefore, it can be used by different
applications.

4. The graph-based nature of RDF makes it a flexible data
structure that can be extended by easily adding new

Archive of SID

www.SID.ir

http://www.sid.ir

nodes and edges [7]. It means that both the data and its
schema can be incrementally extended.

The main elements of the approach are described in the
next sections.

A. Ontology

The underlying ontology is developed by extending the
SIMILE Java2RDF ontology1. The original version of this
ontology describes various structural features of Java source
code, e.g. members of a class and parameters of a method,
but it does not address the behavioral features, e.g. methods
called, or classes instantiated by a method. Therefore it is
extended by adding a number of properties and concepts,
which for the sake of brevity, only some of them are
mentioned below.

 The properties constructorCount, methodCount,
fieldCount, are respectively used for expressing the
number of the constructors, methods and fields of a class,
and the property parameterCount is used for the number
of the parameters of a method. It is worth noting that
these properties are added for two reasons. First,
SPARQL 1.0 does not support a SQL-like COUNT
aggregate function. Although SPARQL 1.1 provides such
a function, but it is not yet ratified as a W3C
recommendation. Second, it was practically identified
that advantages of explicitly stating this information (i.e.
providing richer specifications, making queries simpler,
and reducing complexity of query evaluation), is more
than its disadvantages (i.e. increasing size of the
specifications)

 The properties calls, and isCalledBy, are respectively
used for stating methods called by, and methods calling a
specific method.

 The property instantiates is added for specifying classes
that are instantiated by a specific method

 The property imports is added for declaring classes which
are imported in a Java source file

 The concepts IfStmt, ThenStmt, SwitchCaseStmt,
TryCatchStmt, ForStmt, WhileStmt, DoWhileStmt are
respectively used to represent instances of if, then,
switch-case, try-catch, for, while, do-while statements

B. RDFizer

An RDFizer is developed which scans the input source
code and generates the corresponding RDF representation
based on the ontology mentioned in the previous section. It is
implemented as a plug-in for the Eclipse IDE, and uses the
Eclipse Abstract Syntax Tree (AST) API for parsing source
code. Therefore it is able to access all the details of the
source code, e.g. even the comments.

A small part of the source code of the java.awt.Point
class, and parts of its RDF specification (in N3 serialization)
is illustrated in Fig. 1 and Fig. 2.

1 http://simile.mit.edu/java#

C. Repository

A RepositoryManager tool is implemented in Java which
provides simple facilities for: creating a repository, adding
RDF to it, and executing SPARQL queries over it. Since it is
implemented using Jena 2 API, it is possible to add inference
rules to a specific repository. The RepositoryManager uses
different Jena reasoners, e.g. GenericRuleReasoner, to
perform reasoning.

IV. EXPERIMENTAL EVALUATION

An experiment is conducted to evaluate the applicability
of the proposed approach to the task of design pattern
detection. The experiment is performed on a system with
Intel Core2 Duo processor (2.26, 2.27 GHz), 4GB RAM, and
64-bit Windows Vista operating system.

The description of the experiment is as follows: Nine
design patterns have been selected from different GoF
categories as the subject patterns. Source code of the input
software is given to the RDFizer to generate the
corresponding RDF representation. The RepositoryManager
is used to create a repository for storing the resulting RDF.
Then, a query is created for the detection of each design
pattern. Finally, each query is executed over the repository,
and its results are considered as the instances of the
corresponding design pattern.

In order to perform this experiment, first a sample dataset
is prepared, and then the required queries are created. These
are described next.

public class Point extends Point2D
 implements java.io.Serializable {
 public int x;
 public int y;
 public Point getLocation() {
 return new Point(x, y);
 } …
}

Figure 1. A small part of the java.awt.Point source code.

obj:java_awt_Point rdfs:label "Point" ;
 a java:Class ;
 java:modifier java:public ;
 java:abstract "false"^^xsd:boolean ;
 java:extends obj:java_awt_geom_Point2D ;
 java:constructorCount "1"^^xsd:integer ;
 java:method obj:java_awt_Point_getLocation .
obj:java_awt_Point_getLocation_ rdfs:label
"getLocation" ;
 a java:Method ;
 java:modifier java:public ;
 java:abstract "false"^^xsd:boolean ;
 java:parameterCount "0"^^xsd:integer ;
 java:expression-type obj:java_awt_Point ;
 java:instantiates obj:java_awt_Point .

Figure 2. An excerpt from the RDF specification of java.awt.Point.

Archive of SID

www.SID.ir

http://www.sid.ir

A. Dataset

The source code of three open-source Java projects,
JHotDraw5.1, JRefactory2.6.24, and JUnit3.7 are used as the
input to the RDFizer, and the resulting RDF specifications
are stored in a repository. Some statistics about this
repository is presented in TABLE I.

B. Queries

Based on the specification of the patterns by GoF, each
design pattern can be described by a set of statements, each
stating some conditions or relations between different
entities in the source code. If the ontology that is used for the
semantic representation of source code is expressive enough
for describing these statements, then it is possible to develop
a query, in terms of that ontology, for detecting instances of
the design patterns.

It was identified that the RDFizer and the underlying
ontology are respectively powerful and expressive enough to
enable creation of the required queries. However, since the
description of different design patterns is not very strict, and
there are variants for each pattern, to cover the most typical
variants of a specific design pattern, usually it is needed to
create queries which use one or two UNION operators, and
hence are not short.

Due to space limitation, only the query associated with
the Decorator design pattern is shown in Fig. 3 (prefix part is
omitted for brevity).

C. Results Analysis

After executing each query on the repository, its results
are compared with the results of the approach of Tsantalis et
al. [2] which are generated by running the associated
tool. TABLE II. reports the results of these two approaches.

As it is shown in this table, the proposed approach has
been successful in detecting the instances of the design
patterns. In many cases its results are identical to results
of [2], while in a few cases there are differences. These cases
are manually evaluated by two experts and the results are
briefly described here.

The most noticeable difference is associated with
detecting State-Strategy on JHotDraw and JRefactory. The
proposed approach has detected 11 results on JRefactory
which have not been detected by [2]. Manual evaluation
indicated that they all are correctly detected.

Furthermore, the 3 results that are detected by [2], but not
by the proposed approach, are correct too, i.e. the proposed
approach has missed them.

TABLE I. SOME STATISTICS ABOUT THE SAMPLE REPOSITORY

Project
RDF

Generation
Time (ms)

RDF Storage
Time (ms)

of RDF
Triples

JUnit 6704 4947 96873
JhotDraw 20985 8284 140877
Jrefactory 80543 18415 333346
Total 108232 31646 571096

SELECT DISTINCT ?component ?decorator ?field ?operation
WHERE {
{
?component rdf:type java:Interface .
?component java:method ?operation .
?operation rdfs:label ?operationLabel .
?decorator java:assignable-to ?component .
?decorator java:field ?field .
?field java:expression-type ?component .
?decorator java:method ?method1 .
?method1 rdfs:label ?operationLabel .
?method1 java:calls ?operation .
?concreteDecorator java:assignable-to ?decorator .
?concreteDecorator java:method ?method2 .
?method2 rdfs:label ?operationLabel .
?method2 java:calls ?method1
} UNION {
?component rdf:type java:Interface .
?component java:method ?operation .
?operation rdfs:label ?operationLabel .
?decorator java:assignable-to ?component .
?decorator java:field ?field .
?field java:expression-type ?component .
?decorator java:method ?method1 .
?method1 rdfs:label ?operationLabel .
?method1 java:calls ?otherMethod .
?otherMethod java:calls ?operation .
?concreteDecorator java:assignable-to ?decorator .
?concreteDecorator java:method ?method2 .
?method2 rdfs:label ?operationLabel .
?method2 java:calls ?method1
} UNION {
?component rdf:type java:Interface .
?component java:method ?operation .
?operation rdfs:label ?operationLabel .
?decorator java:assignable-to ?component .
?decorator java:field ?field .
?field java:expression-type ?component .
?decorator java:method ?method1 .
?method1 rdfs:label ?operationLabel .
?method1 java:calls ?operation .
} }

Figure 3. The SPARQL query used for detecting Decorator design
pattern.

The two Prototype instances which are detected by [2]
and missed by the proposed approach, are better to be
considered as instances of the Composite pattern.

By manually checking the instances which are missed by
the proposed approach, it was identified that there are two
reasons for this. The first reason is that the current
implementation of the RDFizer has still some weaknesses. It
does not yet support all the features of Java source code, e.g.
generics or static initializers.

The second reason is that the implementation details of
the design patterns are not fixed, and there might be slight
difference between their documentation and implementation.
Some of the [2]’s results that are missed by the proposed
queries are due to different interpretation of the
implementation aspects of the patterns. Unfortunately it is

Archive of SID

www.SID.ir

http://www.sid.ir

not easy to judge [2]’s interpretation because its details are
inaccessible for the authors.

Similar to all works in information retrieval domain, it is
interesting to evaluate the results in terms of precision and
recall. However, in the absence of an exact list of the design
pattern instances of the three input projects, it is not possible
to precisely measure recall of the proposed approach. It is
possible to assess precision by manually checking the results.
Such a manual verification was performed and it was shown
that none of the detected results are incorrect, although they
might differ from how another expert describes their related
design patterns.

In order to evaluate the proposed approach in terms of its
efficiency, its execution time is compared with that of [2].
The proposed approach includes three steps, and the
execution time of these steps is separately calculated as T1,
T2 and T3. These steps are:

1. Generating RDF from Java source files
2. Storing the RDF files in the repository
3. Executing the query on the repository

The sum of T1 and T2 is considered as the time required
by the proposed approach to prepare the repository. Further,
T3 can be considered as the detection time of this approach.

The approach presented in [2] has two main phases:

1. Preprocessing phase including system parsing,
inheritance hierarchy detection and construction of
system matrices

2. Detection of the design patterns using information
gathered in the previous phase.

 TABLE III. compares the preparation time of the proposed
approach with the preprocessing time of [2]. Further, the
detection time of the two approaches on the three sample
projects is presented in TABLE IV.

Since [2] detects both State and Strategy design patterns
simultaneously therefore their detection time is reported as a
single value.

TABLE II. RESULTS OF DESIGN PATTERN DETECTION EXPERIMENT

Project
Design
Pattern #

JRefactory JHotDraw JUnit
D C B A D C B A Dd Cc Bb Aa
0 0 1212 0 0 2 2 0 0 0 0 Singleton 1
0 0 0 0 0 0 4 4 0 0 1 1 Composite 2
0 4 1 5 1 1 9 9 0 0 4 4 Observer 3
0 0 0 0 0 0 28 280 0 1 1 Decorator 4
0 0 3 3 0 2 4 6 0 1 0 1 Factory

Method
5

0 0 0 0 2 0 5 3 0 0 0 0 Prototype 6
3 113845 4 4 49 490 1 7 8 State-

Strategy
7

1 0 2928 0 0 13 130 0 1 1 Template
Method

8

a. number of instances detected by the proposed approach

b. number of instances detected by the [2]

c. number of results of the proposed approach which are not detected by [2]

d. number of results of [2] which are not detected by the proposed approach

As shown in TABLE III. the preparation time of the
proposed approach is much greater than the preprocessing
time of [2]. There are different reasons for this. First, the I/O
overhead of creating RDF files in the first step, and then
reading and storing them in the repository in the second step
increases the preparation time of the proposed approach.
Since [2] does not make its intermediate representation
permanent, and stores it as matrices in the main memory, it
has better performance with regard to the preprocessing time.

As illustrated in TABLE IV. generally, the detection time
of the proposed approach is better than that of [2].

This experiment demonstrates that the proposed approach
for design pattern detection is both feasible and effective,
since it generates good results in comparison with another
existing method. Its detection time is also negligible
compared to the opponent method. However there is a
concern about the great preparation time of the proposed
approach, and it might lead to the questions about the
usability of this approach.

The answer to this question is that this high cost of
preparation must be viewed along with the benefits of the
proposed approach. The main point is that once this cost is
paid and the repository is prepared, it can be used for
performing different analysis tasks like those demonstrated
in [20] and the one covered in this paper. Obviously, the
approach used in [2] does not exhibit this reusability and
application independence.

An important advantage of the proposed approach is that
it supports ontological reasoning which can be used to
simplify the detection process. This capability is utilized
during the experiments. The developed RDFizer initially
covered just direct method calls. It did not generate RDF
triples for specifying indirect calls. However when creating a
query for detecting state-strategy, it turned out that indirect
method calls are also important.

There were two possible solutions for this: 1) modifying
the RDFizer to generate required triples, and 2) adding a
number of Jena rules to the repository so that it automatically
infers indirect calls from direct calls.

TABLE III. PREPARATION/PREPROCESSING TIME OF THE APPROACHES

 proposed approach Tsantalis et al. [2]
Preparation Time (ms) Preprocessing Time (ms)

JUnit 11651 140
JHotDraw 29269 312
JRefactory 98958 1513

TABLE IV. DETECTION TIME OF THE APPROACHES

Project

Design Pattern#
JRefactoryJHotDraw JUnit

B2 A1 B2 A1 B2 A1

0 11 0 s s 10Singleton 1
78 29 15 26 15 29Composite 2

2715 20 249 21 62 23Observer 3
78 4 15 5 15 5 Decorator 4
0 6 0 5 0 4 Factory Method 5

2683 3 280 4 46 3 Prototype 6
3755 20 280 20 109 19State-Strategy 7

0 2 0 2 0 3 Template Method 8

Archive of SID

www.SID.ir

http://www.sid.ir

The second option has been chosen by creating two rules

shown in Figure 4. Rule1 says that if a method method1 calls
a method method2, and method2 calls a method method3,
then the consequence is that method1 indirectly calls
method3. It was learned that the capability of supporting
reasoning is very important, since it reduces the complexities
and costs of performing analysis tasks.

[rule1: (?method1 java:calls ?method2), (method2 java:calls
?method3) -> (?method1 java:indirectlyCalls ?method3)]

[rule2: (?method1 java:calls ?method2), (?method2
java:indirectlyCalls ?method3) -> (?method1
java:indirectlyCalls ?method3)]

Figure 4. Jena rules defined for detecting indirect calls

V. CONCLUSION

In this paper, a semantic web based approach is proposed
for detecting design patterns from Java source code. It uses
an RDFizer to generate semantic representation of source
code, an RDF repository for storing these representations,
and a query-based access mechanism for retrieving
information from the source code. As the experimental
results demonstrate, this approach is successful in effectively
detecting instances of different design patterns in source
code.

 The main theme of future works is to use the proposed
approach for other analysis tasks. For instance it is
interesting to investigate to what extent this approach can be
used for helping programmers in learning new APIs.

VI. REFERENCES
[1] L. Hu, K. Sartipi, Dynamic analysis and design pattern detection in

Java programs, In: Proceedings of the 20th International Conference
on Software Engineering and Knowledge Engineering, SEKE 2008,
San Francisco Bay, 2008, pp. 842-846.

[2] N. Tsantalis, A. Chatzigeorgiou, G. Stephanides, S.T. Halkidis,
Design pattern detection using similarity scoring. IEEE Transactions
on Software Engineering 32 (11) (2006) 896-909.

[3] RDF-Semantic Web Standards, http://www.w3.org/RDF/

[4] RDF Vocabulary Description Language 1.0: RDF Schema,
http://www.w3.org/TR/rdf-schema/

[5] OWL Web Ontology Language Overview,
http://www.w3.org/TR/owl-features/

[6] G. Antoniou, F.V. Harmelen, Web Ontology Language: OWL, In: S.
Staab, R. Studer (eds.), Handbook of Ontologies, Springer, 2009, pp.
91-110.

[7] The RDF Advantages Page, http://www.w3.org/RDF/advantages.html

[8] E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design patterns:
elements of reusable object-oriented software, Addison Wesley, 1995.

[9] J. Dong, D.S. Lad, Y. Zhao, DP-Miner: design pattern discovery
using matrix, In: Proceedings of the 14th Annual IEEE International
Conference on Engineering of Computer Based Systems, ECBS’07,
Arizona, USA, 2007, pp. 371-380.

[10] A.D. Lucia, V. Deufemia, C. Gravino, M. Risi, A two phase approach
to design pattern recovery, In: Proceedings of the 11th European

Conference on Software Maintenance and Reengineering, CSMR '07,
Amsterdam, The Netherlands, 2007, pp. 297-306.

[11] N. Shi, R.A. Olsson, Reverse engineering of design patterns from
Java source code, In: Proceedings of the 21st IEEE/ACM
International Conference on Automated Software Engineering, ASE
'06, Washington, DC, 2006, pp. 123-134.

[12] T. Sharma, D. Janakiram, Inferring design patterns using the ReP
graph, Journal of Object Technology 9 (5) (2010) 95-110.

[13] K. Kiefer, A. Bernstein, J. Tappolet, Mining software repositories
with iSPARQL and a software evolution ontology, In: Proceedings of
the 4th International Workshop on Mining Software Repositories
(MSR), Minneapolis, MA, 2007.

[14] O. Hartig, M. Kost, J.C. Freytag, Automatic component selection
with semantic technologies, In: Proceedings of the 4th International
Workshop on Semantic Web Enabled Software Engineering, SWESE
2008, Karlsruhe, Germany, 2008.

[15] A. Alnusair, Tian. Zhao, Retrieving reusable software components
using enhanced representation of domain knowledge, In: Recent
Trends in Information Reuse and Integration, Lecture Notes in
Computer Science (LNCS), Springer Verlag. (Accepted, to appear in
2011).

[16] P. Schuegerl, J. Rilling, P. Charland, Enriching SE ontologies with
bug report quality, In: Proceedings of the 4th International Workshop
on Semantic Web Enabled Software Engineering, SWESE 2008,
Karlsruhe, Germany, 2008.

[17] F.A. Durão, T.A. Vanderlei, E.S. Almeida, S.R.L. Meira, Applying a
semantic layer in a source code search tool, In: Proceedings of the
2008 ACM symposium on Applied computing, SAC '08, New York,
NY, 2008, pp. 1151-1157.

[18] I. Keivanloo, L. Roostapour, P. Schugerl, J. Rilling, Semantic web-
based source code search, In: Proceedings of the 6th International
Workshop on Semantic Web Enabled Software Engineering, SWESE
2010, San Francisco, CA, 2010.

[19] J. Tappolet, Semantics-aware software project repositories, In:
Proceedings of the 5th European Semantic Web Conference,
ESWC’08, Ph.D. Symposium, Tenerife, Spain, 2008.

[20] J. Tappolet, C. Kiefer, A. Bernstein, Semantic web enabled software
analysis, Journal of Web Semantics 8 (2010) 225-240.

[21] C. Kiefer, A. Bernstein, M. Stocker, The fundamentals of
iSPARQL—a virtual triple approach for similarity-based semantic
web tasks, In: Proceedings of the 6th International Semantic Web
Conference (ISWC), 2007, pp. 295-309.

[22] C. Kiefer, A. Bernstein, A. Locher, Adding data mining support to
SPARQL via statistical relational learning methods, In: Proceedings
of the 5th European Semantic Web Conference, ESWC’08, Tenerife,
Spain, 2008, pp. 478-492.

[23] J. Dong, Y. Zhao, T. Peng, A review of design pattern mining
techniques, International Journal of Software Engineering and
Knowledge Engineering 19(6), 2009, pp. 823-855.

[24] D. Binkley, Source code analysis: a road map, Future of Software
Engineering (FOSE '07), 2007, pp. 115-30, 2007.

[25] H.H. Shahri, J.A. Hendler, A.A. Porter, Software configuration
management using ontologies, 3rd International Workshop on
Semantic Web Enabled Software Engineering (SWESE 2007),
Innsubruk, Austria, 2007.

[26] H.J. Happel, S. Seedof, applications of ontologies in software
engineering, 2nd International Workshop on Semantic Web Enabled
Software Engineering (SWESE 2006)

[27] Y.Wang, X. Bai, J. Li, R. Huang, Ontology-based test case generation
for testing web services, ISADS, March 2007.

[28] E. Bagheri, F. Ensan, D. Gasevic, Decision support for the software
product line domain engineering lifecycle, Automated Software
Engineering Journal 19(3): 335-377, Springer, 2012.

Archive of SID

www.SID.ir

http://www.sid.ir

