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Abstract—This paper considers the design of robust 
observers for a class of continuous-time nonlinear systems 
presented by Takagi-Sugeno (T-S) model with nonlinear 
subsystems and unmeasurable premise variables. The 
proposed T-S structure reduces the number of rules in the 
Sugeno model by using local nonlinear rules. Moreover, it 
can represent larger class of nonlinear systems as compared 
to the measurable premise variable case. The proposed 
observer guarantees exponential convergence of state 
estimation error by Lyapunov stability analysis and linear 
matrix inequality (LMI) formulation in the presence of both 
parametric and non-parametric uncertainties. Numerical 
examples illustrate effectiveness of the proposed method. 

Keywords-Robust fuzzy observer; Nonlinear Local Model; 
Unmeasurable premise variable. 

I. INTRODUCTION 

TAKAGI-SUGENO (T-S) fuzzy model is a well-known 
tool for nonlinear system modeling with increasing 
interest in recent years. Because T-S model is a universal 
approximator, it can model any smooth nonlinear system 
with any degree of accuracy [1]. Furthermore, the local 
linear subsystems of this model allow one to use powerful 
linear systems tools, such as Linear Matrix Inequalities 
(LMIs), to analyze and synthesize T-S fuzzy systems. 
However, as complexity of the system increases, the 
number of rules in the model and hence, the number and 
dimensions of LMIs increases and becomes harder to 
solve. One possible solution is to reduce the accuracy in 
the model, which decreases the model complexity; 
however, the convergence of fuzzy controller or observer 
is not guaranteed in this case. To solve this problem, one 
may use nonlinear local subsystems for the T-S model. 
This will decrease the number of rules while increasing 
the model accuracy.  

A very simple form of these nonlinear Sugeno model is 
used in [2] that has used a linear form for the consequence 
part plus a sinusoidal term. A more advanced work is 
performed by Dong in [3] and [4], where he used sector-
bounded functions in the subsystems. In [5] and [6], 
Tanaka et al. have proposed the T-S model with 
polynomial subsystems. For stability analysis, they have 
used Sum of Squares (SOS) approach, which was the first 
use of SOS instead of LMI in fuzzy systems analysis. In 
[7] and [8], Sala represents a similar form of Sugeno 
model and used the Taylor series expansion of the system 
for construction of the polynomial subsystems. He states 
that the nonlinear consequent part in the T-S model not 
only reduces the number of rules but also reduces the 
conservativeness in the controller design. Design of fuzzy 
observers for such systems is briefly discussed here.  

Fuzzy observers were first introduced by Tanaka and 
Sano in [9] in 1994 and ever since have been an active 
research issue. Different types of fuzzy observers have 
been discussed in literatures. The separation property of 
fuzzy observer and controller was first discussed by Ma et 
al. in [10] and more completely by Yan and Sun in [11]. 
When uncertainty exists in the model, the separation 
property cannot be proved in general. Later, in this regard, 
robust fuzzy observers were discussed in different papers 
such as [12] and [13].  

For estimating the states of T–S systems, two cases 
for the premise variable can be distinguished. First, the 
premise variable vector does not depend on the estimated 
states; and second, when the premise variable depends on 
some of the states to be estimated. The latter structure can 
represent a larger class of non-linear systems. 
Unfortunately, the developed methods for fuzzy observer 
design with measured premise variables are not directly 
applicable for the systems with premise variables as a 
function of states [14]. Most works in literatures are based 
on the first case. The second case was first discussed in 
[15] in 2001. Many recent works are also working on 
obtaining less conservative conditions for this case [14] 
and [16]. For T-S systems with nonlinear consequent and 
unmeasurable premise variables, when no uncertainty 
exist in the model state observer is designed in [17]. In 
this paper, robust state observer for T-S fuzzy systems 
with nonlinear consequent part is designed when the 
premise variables depend on the estimated states. Both 
parametric and non-parametric uncertainties are 
considered in the model. 

The paper is organized as follows: In Section 2 the 
nonlinear Sugeno model is described. The proposed 
observer and its convergence proof for systems with non-
parametric uncertainty are presented in Section 3 and with 
parametric uncertainty in Section 4. In Section 5, two 
numerical examples are given to show effectiveness of the 
proposed method. 

II. SUGENO MODEL WITH NONLINEAR SUBSYSTEMS 

Consider a class of nonlinear system described by 

       
     

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

a b

ya yb

x t f x t f x t x t g x t u t

y t f x t f x t x t

  

 

 

       (1) 

where ( )x t  is the state, ( )u t is the control input, ( )y t  is the 

measurable output,  ( ( )) , , ,nf x t n a b ya yb  are 

nonlinear functions and ( ( ))x t  is a vector of Lipschitz 
nonlinear functions, satisfying Lipschitz condition 
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 ˆ ˆ( ( )) ( ( )) ( ) ( ) 1    Ri i i ix t x t x t x t i s    (2) 

where i  is a Lipschitz constant, iR  is a constant matrix 
with appropriate dimensions, and s is the number of 
nonlinear functions.   

The system (1) can be represented by a T-S fuzzy 
system with local nonlinear models as follows: 

 
 

1 1

1

2

:

IF ( ) is ( ) , ..., and ( ) is ( ), THEN 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

i p ip

i xi i i

i yi i

Plant Rule i

z t z z t z

x t x t x t u t t

y t x t x t t

   

  

A G B D

C G D



 

 

 

   (3) 

where 1,...,i r  is the number of rules, 1( ), , ( ) pz t z t  are 

the premise variables, and ij  denote the fuzzy sets.  

In this case, the whole fuzzy system can be 
represented as 

 

 

1
1

2
1

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

r

i i xi i i
i

r

i i yi i
i

x t z x t x t u t t

y t z x t x t t

  

  




     

    





A G B D

C G D



(4) 

where 

1 1

1

( )
( ) , ( ) 1, ( ) ( )

( )

pr
i

i i i ijr
i j

k
k

h z
z z h z z

h z  



   


  

 

III. OBSERVER DESIGN 

The observer used in this paper is a Luenberger type 
observer, given as follows: 

 
 

1 1

:
IF ( ) is ( ), , and ( ) is ( ) THEN  

ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) ( )
ˆ ˆ ˆ( ) ( ) ( )

      
 

A G B L

C G


i p ip

i xi i i

i yi

Observer Rule i
z t μ z ... z t μ z ,

x t x t φ x t u t y t y t

y t x t φ x t

              (5) 

For the analysis of the error convergence, two cases 
are distinguished: 1) the scheduling vector z does not 
depend on the estimated states, and 2) the scheduling 
vector z depends on some of the estimated states, which 
is the subject of this paper. In this case, the observer (5) 
becomes 

  

 
1

1

ˆ ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) ( ) ( )

ˆ ˆ ˆ ˆ( ) ( ) ( ) ( )

r

i i xi i i
i

r

i i yi
i

x t z x t x t u t y t y t

y t z x t x t

 

 





      

   





A G B L

C G



 

(6) 
For the sake of notation, the following definitions will be 
used: 

ˆ
1

1

ˆ: ( )

: ( )

r

i iz
i
r

z i i
i

z

z
















X X

X X
  (7) 

for , , , , ,x y   X A B C G G L . Hence, the error dynamic 

can be rewritten as 

     
 

ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ1 2

( ) ( ) ( )

( ) ( )

x y ez z z z z z

z z z

e t e t x t

t t





   

  

A L C G L G

D L D Δ


     (8) 

where 

  

    
ˆ

1

ˆ ˆ1 2

ˆ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

r

i i i iz
i

xi yi i i iz z

t z z x t

x t t u t



   

   

Δ A L C

G L G D L D B

 

 
(9) 

and 

     ˆ( ) ( ) ( )e x t x t x t      (10) 

A. Fuzzy Observer Analysis 
In this section, the conditions for asymptotically 

convergence of the observer states in (5) to the system 
states in (4) will be given. The following lemmas are used 
in this paper. 

Lemma 1 [3]: If the following conditions hold: 

0 1

1 1
( ) 0 1

1 2

ii

ii ij ji

i r

i j r
r

  

     


M

M M M
 

Then, the following inequality holds: 

1 1

0
r r

i j ij
i j

 
 

 M  

where (1 )i i r    satisfies 
1

0 1, 1
r

i i
i

 


   . 

Lemma 2 [18]: For any positive-definite matrix Π  
with appropriate dimensions, the following property 
holds: 

 1 0T T T T    X Y Y X X ΠX Y Π Y Π  

In the following theorem, sufficient stability conditions 
for error dynamic (8) will be given. 

Theorem 1: The error dynamic (8) is asymptotically 
stable and with an H  performance bound 0 if there 

exist P P 0T  , Y 1 i i r ,  1, 0  , 
1 is s sΛ diag[ ... ] , 0    

 such that 

1( ) ( )Δ t e t                   (11)

 0 1 ,

1 1
( ) 0 1

1 2

ii

ii ij ji

i r

i j r
r

  

     


Ξ

Ξ Ξ Ξ
 (12) 

where ( )tΔ  is defined in (9) and 

  2

1 2

0

0 0

T T T T
i i j

T T
xi i j

ij

T T T
i i j

He          
 
        
   

A P C Y R ΛR I I

G P G Y Λ
Ξ

P I

D P D Y I
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in which ( ) THe  X X X , 2
1  , 

1 2[ ]T T T
s R R R R , 

2 2
1 1diag[ ]s sI I     and 

iI  is an identity matrix, with in  the number of rows of 

iR . Then, the observerb gains are 1 1i i i r  L P Y . 

Proof: Based on Lemma 1, condition (12) results in  

1 1

ˆ ˆ( ) ( ) 0
r r

i j ij
i j

z z 
 

 Ξ  

This means that 

  2
ˆ ˆ ˆ

ˆ ˆ ˆ

ˆ ˆ ˆ1 2

0
0

0 0

T T T T
z z z

T T
xz z z

T T T
z z z

He       
 
        
   

A P C Y RΛ I I

G P G Y Λ

P I

D P D Y I

   

 

(13)

 

Pre- and post-multiplying (13) by 
[ ( ) ( ( )) ( ) ( )]T T

ee t x t t t   and its transpose, it yields 

ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ

1

( )( ) ( ( ))( ) ( )

( ) ( ) ( ) ( ) ( ( ))

( ) e( ) ( )e( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )e( ) ( ) ( )

( )

T T T
ez z z xz z yz

T
ez z z xz z yz

T T T T T
e e

T T T T

T

e t x t e t

e t e t x t

e t t e t t t t t t

t e t e t t e t t t t

t





   

  



    
      

   

    

A L C G L G P

P A L C G L G

R ΛR Λ

P P

D   ˆ ˆ ˆ ˆ ˆ ˆ2 1 2( ) ( ) ( ) 0
T T

z z z z z zL e t e t t   D P P D L D

 

(14) 

Since ( ( ))x t  satisfies the Lipschitz condition (2) and 

1diag[ ... ] 0is s s   Λ , it results that 

( ) e( ) ( ) ( ) 0T T T
e ee t t t t   R ΛR Λ  (15) 

Also based on (11) 

( ) e( ) ( ) ( ) 0   T Te t t t t   (16) 

Combining (15), (16) and (14) gives  

  

ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ1 2

2

( )( ) ( ( ))( ) ( )

( ) ( ) ( ) ( ) ( ( ))

( ) ( ) ( ) ( )

( ) ( )

( ) e( ) ( ) ( ) 0

T T T
ez z z xz z yz

T
ez z z xz z yz

T T

TT
z z z

T T

e t x t e t

e t e t x t

t e t e t t

He t e t

e t t t t







  

    
     

  

 

  

A L C G L G P

P A L C G L G

P P

D L D P

(17) 

For error dynamic (8), selecting the Lyapunov function 
as ( ) ( ) ( )TV t e t Pe t , it yields 

   

ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ1 2 1 2

( ) ( )( ) ( ( ))( ) ( )

( ) ( ) ( ) ( ) ( ( ))

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

T T T
ez z z xz z yz

T
ez z z xz z yz

TT T
z z z z z z

T T

V t e t x t e t

e t e t x t

t e t e t t

t e t e t t





 

     
     

   

  

A L C G L G P

P A L C G L G

D L D P P D L D

P P



(18)  

Comparing (18) and (17) results that   

2( ) ( ) ( ) ( ) ( ) 0T TV t e t e t t t        (19) 

which implies that the error dynamic is asymptotically 
stable and 

 
( ) ( )e t t  .      □ 

Remark 1: In order to satisfy (11), the maximum 
value for   should be found. Hence, the problem of 
observer design can be stated as the generalized 
eigenvalue problem (GEVP) as 

 
Maximize

subject to (12)


  

Formulating as a GEVP, the value of   can be 
determined by the LMI solvers, and there is no need to 
determine this parameter in advance.  

Remark 2: condition (11) is a mild condition which 
is satisfied if ( )i z  is differentiable w.r.t. x and have a 
bounded first derivative for almost all x. This is satisfied 
by most membership functions in practice. 

IV. PARAMETRIC UNCERTAINTY CASE 

Now suppose there are some uncertainties in the model 
parameters as follows:  

 
 

1 1

1

2

:

IF ( ) is ( ), ..., and ( ) is ( ), THEN 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

i p ip

i i xi i i

i i yi i

Plant Rule i

z t z z t z

x t x t x t u t t

y t x t x t t

    

   

A A G B D

C C G D



 

 

 

 (20) 

where 

1 1 2 2, , 1T
i i i i    A M FN C M FN F F                   (21) 

From now on, it is assumed that the nonlinear 
functions are sector bounded. I.e., for any 1 0Λ   

1 1( ( )) ( ) ( ( )) ( ( )) 0T Tx t x t x t x t EΛ Λ    (22) 

where E  is a matrix with proper dimensions. For such a 
model, an observer of the form (5) is considered. Then, 
the error dynamic would be 

     
   

ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ 11 2

( ) ( ) ( )

( ) ( ) ( )

x y ez z z z z z

z z z z z z

e t e t x t

x t t t

   

      

A L C G L G

A L C D L D Δ

 


   (23) 

Now let rewrite the system equation as 

 ˆ ˆ ˆ

ˆ ˆ 21

( ) ( ) ( ) ( )

( ) ( ) ( )
z z xz

z z

x t x t x t

u t t t





   

  

A A G

B D Δ


 

where 

 

   

 

 

1
1

ˆ ˆ

ˆ ˆ1 2

2
1

1

ˆ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

ˆ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

r

i i
i

i i i i iz z

xi yi i iz z

r

i i
i

i i i xi i

t z z

x t u t

x t t

t z z

x t u t x t t





  

      
 
     

  

      





Δ

A A L C L C B

G L G D L D

Δ

A A B G D

 

 

 

 

 (24) 

Archive of SID

www.SID.ir

http://www.sid.ir


 In the following theorem, sufficient stability conditions 
for error dynamic (8) will be given. 

Theorem 2: The error dynamic (23) is asymptotically 
stable and with an H  performance bound 0 if there 

exist 1 1P P 0T  , 2 2P P 0T  , 1iY i r ,   

21, 0   , 1 is s sdiag[ ... ] , 0       such that 

( ) ( ) 1,2i it e t i                                                (25)

 0 1 ,

1 1
( ) 0 1

1 2

   

       


ii

ii ij ji

i r

i j r
r

 (26) 

where ( )i t  is defined in (24) and 

1

2

3 1

4 2
2

5 6

7

8

0

0

0 0

0 0

0 0 0 0

0 0 0 0 0

ij

S

S

S

S

S S

S

S

      
      
     
 

     
   
 

  
  

Λ

Λ

I

I

I


              (27) 

  2 2
1 1

1 1 1

2 0

T T T T
i i j

T
i

T
i j

He

S

      
 
   
   

A P C Y R ΛR I I

M P I

M Y I

  

   2 2
2 2 1 1 2 2

2 1 2

2

2

0
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Proof: Based on Lemma 1, condition (24) results in  
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 For the error dynamic (23), consider the following 
Lyapunov function:  
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Based on (21) and Lemma 2, it yields  
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     (29) 

Suppose ( ) ( )u t k x t . Then, based on (29), (15), (16) 

and (21) and by Pre- and post-multiplying (27) after the 
use of Schur-complement Lemma on S1 and S2 by 

1 2
T T T T T

ee x       and its transpose it 

yields 1( ) ( ) ( ) ( ) ( ) 0  V T Tt e t e t t t     which results 

( ) ( )  e t t t   so the proof is complete.  

V. SIMULATION EXAMPLES 

A. Example 1 

Consider the system shown in Fig. 1, which represents a 
Translational Oscillator with an eccentric Rotational 
Actuator (TORA) [19]. The nonlinear coupling between 
the rotational motion of the actuator and the translational 
motion of the oscillator provides the mechanism for 
control. Let x1 and x2 denote the translational position and 
velocity of the cart and x3 and x4 denote the angular 
position and velocity of the rotational mass. Then, the 
system dynamics can be described by the equation 
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d t , 0.05  
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in which ω(t) represents white noise. This system can be 
modeled as follows: 
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C , 2
4 4( ) 4 x x x  

Note that for this system, the premise variable x3 is 
measured. Hence, the sixth row and the seventh column 
are omitted from ij  in (27). Moreover, the term 2

1 I  in 

element (1,1) of S1 and 2
2 I  in element (1,1)  of S2 are 

omitted. In addition, note that the system is stabilized first 
and the observer is designed for the stable system. The 
following gains for the observer are obtained based on 
Theorem 2. Beside on the nonparametric disturbances 
define in the model of the system, parametric uncertainty 
is also added by considering 0.15  for the observer 
design. Here 0.1 . 
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Fig. 2 shows states and their estimation. 
 

 
Figure 1.  TORA system 
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Figure 2.  States (solid) and their estimation (doted) of TORA 

 

B. Example 2 

In this example, the ball-and-plate system [20] is 
considered. To design an observer for this system, it is 
assumed that the mutual interactions of both coordinates 
are negligible. Due to the symmetry of x and y directions, 
only the x direction is discussed here. The other direction 
has a similar behavior. The state-space form of the system 
in x direction can be given as 
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where, 1 2 3 4( , , , ) ( , , , )T T
x xX x x x x x x     , 0.7143b , 

and 
29.81g m s . Moreover, x is the position of the ball 

along the x-axis and x  is the angle of the plate measured 

from the x-axis. Assume that 4 1 11 [ , ]x x d d  . This 
system can be modeled by a Sugeno model with at least 4 
linear rules or by only two nonlinear rules based on (32) 
with 1 4

ˆx x  as the premise variable and the following 
parameters: 
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In this example, 3( ( )) sin( )x t x  , 1  , 1 2d  , and 

[0 0 1 0]R  . A bound limited white noise with 
power of 0.01 is added to the system as the external 
disturbances.  
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Figure  3.   States in x direction (solid) and their estimation (doted) for 

the ball and plate system. 
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Figure  4.  States in y direction (solid) and their estimation (doted) for the 

ball and plate system. 
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Figure 5.   Satisfaction of (11) in example 2 

Fig. 3 and Fig. 4 show the state estimation error of the 
observer designed based on Theorem 1. Note that the 
same observer is used for the y direction of the system. 
Observer gains are determined based on Theorem 1 and 
are equal to 

1 2

-41.7075    -3.4428 -41.4013    -3.6586

-355.4789  -33.0751 -353.8834  -36.5552
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0.1584 , 0.5  

VI. CONCLUSION 

A Sugeno-type fuzzy observer with nonlinear local 
subsystems and unmeasurable premise variables for a 
class of continuous-time non-linear systems with both 
parametric and non-parametric uncertainties is proposed 
in this paper. The use of non-linear consequent for the T-S 
system reduces the number of rules in the model. 
Moreover, by assuming unmeasurable premise variables, 
one can model larger class of non-linear systems. The 
estimation error convergence was shown using a quadratic 
Lyapunov function and LMI formulation. The future 

works include separation property check of the controller 
as well as the observer for this model.  
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