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Abstract 

      In this paper, we develop a mixed integer linear programming (MILP) model for aggregate 

production planning system with product returns. These returned products can either be disposed 

or be remanufactured to be sold as new ones again; hence the market demands can be satisfied 

by either newly produced products or remanufactured ones. The capacities of production, 

disposal and remanufacturing are limited. Due to NP-hard class of APP, we implement a 

simulated annealing (SA). Additionally, Taguchi method is conducted to calibrate the parameter 

of the meta-heuristics and select the optimal levels of the algorithm’s performance influential 

factors. 
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1. Introduction 

      The Aggregate Production Planning (APP) is a schedule of the organization’s overall 

operations over a planning horizon to satisfy demand while minimizing costs. Aggregate 

production planning is medium-term capacity planning often from 3 to 18 months ahead. It is 

concerned with the lowest-cost method of production planning to meet customer‘s requirements 

and to satisfy fluctuating demand over the planning horizon. Masud and Hwang presented a 

multiple objective formulation of the multi-product, multi-period aggregate production planning 

problem. for solving this model They used three Multiple Objective Decision Making 

Methods(Masud and Hwang, 1980). Nam and Logendran represented a classification scheme 

that categorizes the literature on APP since early 1950, summarizing the various existing 

techniques into a framework depending upon their ability to either produce an exact optimal or 

near-optimal solution (Nam and Logendran, 1992). Wang and Liang  presented a novel 

interactive possibilistic linear programming (PLP) approach for solving the multi-product 

aggregate production planning (APP) problem with imprecise forecast demand, related operating 

costs, and capacity (Wang and Liang, 2005). Silva et al. presented an aggregate production 

planning (APP) model applied to a Portuguese firm that produces construction materials (Silva et 

al., 2006). Ramezanian et al. developed a mixed integer linear programming (MILP) model for 

general two-phase aggregate production planning systems. They used  a genetic algorithm and 

tabu search for solving this problem (Ramezanian et al., 2012). Karmarkar and Rajaram 

considered a competitive version of the traditional aggregate production planning model with 

capacity constraints (Karmarkar and Rajaram, 2012).  Zhang et al. proposed a mixed integer 

linear programming (MILP) model to mathematically characterize the problem of aggregate 

production planning (APP) with capacity expansion in a manufacturing system including 

multiple activity centers. They used the heuristic based on capacity shifting with linear relaxation 

to solve the model (Zhang et al., 2012). Raa et al. presented a mixed integer linear programming 

formulations for the aggregate production–distribution problem for a manufacturer of plastic 
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products that are produced using injection moulding, and a matheuristic solution approach based 

on these models (Raa et al., 2013). Golany et al. studied a production planning problem with 

remanufacturing. They proved the problem is NP-complete and obtain an O(T3) algorithm for 

solve the problem (Golany et al., 2001). Teunter and Bayındır addressed the dynamic lot-sizing 

problem for systems with product returns. They presented an exact, polynomial time dynamic 

programming algorithm (Teunter et al., 2006). Pan et al. addressed the capacitated dynamic lot-

sizing problem arising in closed-loop supply chain where returned products are collected from 

customers. They assumed that the capacities of production, disposal and remanufacturing are 

limited, and backlogging is not allowed. Moreover, they proposed a pseudo-polynomial 

algorithm for solving the problem with both capacitated disposal and remanufacturing (Pan et al., 

2009). Love  and Turner used of stochastic optimal control in solving aggregate production 

scheduling problems and compared this approach with deterministic approaches to the problem 

(Love  and Turner, 1993). Pradenas and Peñailillo introduced a mathematical model and a 

heuristic procedure based on Tabu Search for the problem of Aggregate Production Planning at a 

sawmill to determine the volumes of different products with different tree trunk types and using 

different cut schemes (Pradenas and Peñailillo, 2004).  Mohankumar and Noorul haq proposed 

hybrid algorithm that combines genetic algorithm and ant colony algorithm for solving the 

aggregate production plan problem (Mohankumar and Noorul haq, 2005). Fahimnia et al. 

presented a methodology to model the Aggregate Production Planning problem, which is 

combinatorial in nature, when optimized with Genetic Algorithms (Fahimnia et al., 2008). 

Hashem et al. developed a stochastic programming approach to solve a multi-period multi-

product multi-site aggregate production planning problem in a green supply chain for a medium-

term planning horizon under the assumption of demand uncertainty (Hashem et al., 2013). Wang 

and Yeh presented a integer linear programming model of aggregate production planning (APP) 

from a manufacturer of gardening equipment. Also they proposed a modified PSO (MPSO) 

algorithm for solving the problem (Wang and Yeh, 2014). 

2. Problem formulation 
 

      In this section, we present an MILP formulation of the problem. This model is relevant to 

multi-period, multi-product, multi-machine. 

 

2.1. Assumptions 

 The quantity of inventory and shortage at the beginning of the planning horizon are zero. 

 The quantity of shortage at the end of the planning horizon is zero. 

 Machines are available at all times. 

2.2. Model Variables 

Pit: Regular time production of product i in period t )units). 

Oit: Over time production of product i in period t (units). 

Cit: Subcontracting volume of product i in period t (units). 

Bit: Backorder level of product i in period t (units). 

Iit: The inventory of product i in period t (units). 
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Ht: The number of workers hired in period t (man-days). 

Lt: The number of workers laid off in period t (man-days). 

Wt: workforce level in period t (man-days). 

yit: The setup decision variable of product i in period t, a binary integer variable. 

XRit: The number of returned products of product i that remanufactured in period t 

XRIit: The number of returned products of product i held that in inventory at the end of period t 

XDit: The number of returned products of product i that disposed in period t 

2.3. Parameters 

Dit: Forecasted demand of product i in period t (units). 

pit: Regular time production cost of product i in period t ($/units). 

oit: Over time production cost of product i in period t ($/units). 

cit: Subcontracting cost of product i in period t ($/units). 

hit: Inventory cost of product i in period t ($/units). 

aij: Hours of machine j per unit of product i (machine-days/unit). 

uij: The setup time for product i on machine j (hours). 

rijt: The setup cost of product i on machine j in period t ($/machine-hours). 

Rjt: The regular time capacity of machine j in period t (machine-hours). 

hrt: Cost to hire one worker in period t for labor ($/man-days). 

lt: Cost to layoff one worker in period t ($/man-days). 

wt: The labor cost in period t ($/man-days). 

Ii0: The initial inventory level of product i (units). 

w0: The initial workforce level (man-days). 

Bi0: The initial backorder level of product i (man-days). 

ei: Hours of labor per unit of product i (man-days/unit). 

αt: The ratio of regular-time of workforce available for use in overtime in period t. 

Qjt: The ratio of regular time capacity of machine j available for use in overtime in period t. 

f: The working hours of labor in each period (man-hour/manday). 
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Wmaxt: Maximum level of labor available in period t (man-days). 

Cmaxit: Maximum subcontracted volume available of product i in period t (units). 

TRit: the number of returned products of product i in period t. 

XDmaxit: The maximum number of returned products of product i that could be disposed in 

period t. 

XRmaxit: The maximum number of returned products of product i that could be remanufactured 

in period t. 

hXit: Inventory cost of  returned products of product i in period t ($/units) 

C5it: The cost of returned products of product i that disposed in period t. 

C6it: The cost of returned products of product i that remanufactured in period t. 

M: A large number. 

hXit: Inventory cost of returned products of product i in period t($/units). 

2.4. The Proposed Model 
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3. Simulated Annealing Algorithm  

        Simulated annealing (SA) was initially presented by Kirkpatrick, et al. (Kirkpatrick, et al., 

1983). The SA methodology draws its analogy from the annealing process of solids. In the 

annealing process, a solid is heated to a high temperature and gradually cooled to a low 

temperature to be crystallized. As the heating process allows the atoms to move randomly, if 

the cooling is done too rapidly, it gives the atoms enough time to align themselves in order to 

reach a minimum energy state that named stability or equipment. This analogy can be used in 

combinatorial optimization in which the state of solid corresponds to the feasible solution, the 

energy at each state corresponds to the improvement in the objective function and the minimum 

energy state will be the optimal solution. 

The steps of SA algorithm are shown in below(Mehdizadeh and Fatehi, 2014): 

Step 1: Generating feasible initial solution.  

Xbest = X0  

Step 2: Initializing the algorithm parameters which consist of initial temperatures (T0), rate of the 

decrement current temperature (α), max of iteration at each temperature (L), freezing 

temperature (Tf), in this paper Tf  = 0. 

Step 3: Calculating the objective value C(X0) for initial solution. 

Step 4: Initializing the internal loop 

In this step, the internal loop is carried out for S =1 and will be repeated while S < L. 

Step 5: Neighborhood generation 

Step 6: Accepting the new solution 

Set ( ( ) ( )) / ( )nC C X C X C X    

Now,if 0C  , accept the new solution, else if 0C   generate a random number r between      

(0, 1); 

If 01

C

T
r e

 
 
   , then accept a new solution; otherwise, reject the new solution and accept the 

previous solution.  

If S ≥ L, go to step 7; otherwise S +1S and go back to step 5 

Step 7: Adjusting the temperature 

In this step, 0T T    is used for reducing temperature at each iteration of the outer cycle of 

the algorithm. If T0 = Tf return to step 8; otherwise, go back to step 4.  

Step 8: Stopping criteria. 

      Three important issues that need to be defined when adopting this general algorithm to a 

specific problem are the procedures to generate both initial solution and neighboring solutions. 

  

3.1. Representation Schema 

      To design simulated annealing optimization algorithm for mentioned problem, a suitable 

representation scheme that shows the solution characteristics is needed. In this paper, the general 

structure of the solution representation performed for running the simulated annealing for four 

periods with two products is shown in Figure 1. 
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Figure 1 Solution representation 

 

3.2. Neighborhood Scheme 

      At each temperature level a search process is applied to explore the neighborhoods of the 

current solution. In this paper we use swap scheme, Figure 2 illustrates this operation on the four 

periods with two products. 

 

 

 
Figure 2 Illustration of  swap 

 

 

3.3. Cooling schedule scheme  

     The temperature is another basic characteristic of the SA which is gradually decreased when 

the algorithm progressed. Initially, T is set to a high value, Ti, and it can be reduced with some 

patterns at each step of algorithm. The cooling schedule with Ti = α × Ti - 1 (where α is the 

cooling factor constant α ϵ (0, 1)) is considered as cooling pattern for this research. 

 

4. RESULTS  

 

     In this paper, all tests are conducted on a not book with Intel Core 2 Duo Processor 2.00 GHz 

and 2 GB of RAM and the proposed algorithm namely SA are coded in MATLAB R2011(a). 

Moreover the proposed model are coded with LINGO 8 software and using LINGO software for 

solving the instances.  

 

4.1. Parameter Calibration  

     Appropriate design of parameters has significant impact on efficiency of meta-heuristic. In 

this paper the Taguchi method applied to calibrate the parameters of the proposed method 

namely SA algorithm.  The Taguchi method was developed by Taguchi (Taguchi and  

Chowdhury, 2000).This method is based on maximizing performance measures called signal-to-

noise ratios in order to find the optimized levels of the effective factors in the experiments. The 

S/N ratio refers to the mean-square deviation of the objective function that minimizes the mean 
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and variance of quality characteristics to make them closer to the expected values. For the factors 

that have significant impact on S/N ratio, the highest S/N ratio provides the optimum level for 

that factor. As mentioned before, the purpose of Taguchi method is to maximize the S/N ratio. In 

this subsection, the parameters for experimental analysis are determined.  

Table 1 lists different levels of the factors for SA.  In this paper according to the levels and the 

number of the factors, respectively the Taguchi method L9 is used for the adjustment of the 

parameters for the SA. Best Level of the factor for algorithm is shown in table 2. 

 

 
TABLE 1 Factors and their levels 

Factor Algorithm Level Value 

  

 

 

 

SA 

 

 

 

 

3 

 

Max Number of Sub-iteration(l) 

 

10, 15, 20 

Initial Temp(T0) 

 

800, 1000, 1200 

rate of the 

decrement current temperature(α) 

 

0.9, 0.95, 0.99 

 

 
Figure 3 The SN ratios for Simulated Annealing Algorithm 

 
TABLE 2 best level for parameters 

Factor Algorithm Value 

  

 

 

 

SA 

 

Max Number of Sub-iteration(l) 

 

20 

Initial Temp(T0) 

 

1000 

rate of the  

decrement current temperature(α) 

0.95 

 

4.2. Computational Results  

      Computational experiments are conducted to validate and verify the behavior and the 

performance of the simulated annealing algorithm to solve the aggregate production planning 
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model. In order to evaluate the performance of the meta-heuristic algorithm, 20 test problems 

with different sizes are randomly generated. The number of products, machines and periods has 

the most impact on problem hardness. The approaches are implemented to solve each instance in 

five times to obtain more reliable data. Table 3 shows details of computational results obtained 

by solution method for all test problems.  

 
TABLE 3 Details of computational results for all test problem 

 

SA LINGO Problem 

size 

(i.j.t) 

NO 

T(Second) O.F.V T(Second) O.F.V   

52.9 4802139.4 0.46 4689067 2.1.6 1 

118.2 8384220.4 0.92 8023814 2.1.12 2 

152.2 7025394 1.56 6714547 3.3.6 3 

813.1 11854930.8 69 11506630 3.8.8 4 

1575.4 16869008 223 16688330 3.8.12 5 

392 6767710.4 315 6759658 4.4.4 6 

2231.2 22137458.8 1287 21934270 3.8.16 7 

529.6 13319176.6 2575 13268500 4.3.8 8 

708.1 18702552.2  --- ---4.2.12 9 

641.1 24573790.2  --- ---4.2.16 10 

1438.1 17849891.2  --- ---4.3.12 11 

1933.2 25166474  --- ---4.3.16 12 

1325.3 18228164.2  --- ---4.4.12 13 

539.5 11375675.8  --- ---4.6.4 14 

1659.2 15351615.2  --- ---4.6.8 15 

3018.3 23362537.8  --- ---6.3.8 16 

3097 50082131.8  --- ---6.3.12 17 

2650 11128577  --- ---6.4.4 18 

3156 26440668.6  --- ---6.4.8 19 

3376 18340220  --- ---8.2.5 20 

---Means that a feasible solution has not been found after 3600 s of computing time. 

max

[6000,24000]; [20,24]; [22,27]; [100,106]; [60,67]; [0.4,0.5];

[10,15]; [21000,40000]; [200,460]; [200,460]; [61,64]; [60,65];

[0.4,0.5]; [120,190]; [3000
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   

 

 

5. Conclusion 

 

       In this paper, we deal with aggregate production planning problem of  a multi-period, multi-

product, multi-machine subject to capacity constraints in closed loop supply chain which the 

objective function is to minimize the costs of production over the planning horizon. We develop 

a mixed integer linear programming model that can be used to compute optimal solution for the 

problems by an operation research solver. Due to the complexity of the problem, simulated 

annealing algorithm used to solve the problem. Additionally, an extensive parameter setting with 

performing the Taguchi method was conducted for selecting the optimal levels of the factors that 

effect on algorithm’s performance. The computational results show that increasing the number of 

product i and machine j  have a significant impact in increasing the CPU time. 

One straightforward opportunity for future research is extending the assumption of the proposed 

model for including real conditions of production systems such as uncertainty demands, etc. 
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Also, developing new heuristic or meta-heuristic algorithms to make better solutions can be 

suggested. 
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