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Abstract 

Due to the important applications in today's world such as mining web page traversal 

sequences, users behavior in buying or disease treatments, many algorithms have been 

introduced in the area of sequential pattern mining over the last decade, most of which have 

also been modified to support brief representations like closed, maximal, incremental or 

hierarchical sequences. This article reviews a number of algorithms in each category and puts 

them in taxonomy of sequential pattern mining techniques as an application. This article 

investigates these algorithms by introducing taxonomy for classifying sequential pattern 

mining algorithms based on their theoretical features and say advantage/disadvantage of them. 

This classification aims at enhancing understanding of sequential pattern mining problems, 

current status of provided solutions, and direction of research in this area. This article also 

attempts to provide a comparative performance analysis of many of the key techniques in time 

execution and memory usage. 

 

Keywords: Data mining, frequent sequential patterns, apriori-base, pattern-Growth, projected 

database. 
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1. Introduction 

Sequential pattern mining discovers frequent sub-sequences as patterns in a sequence database. A 

sequence database stores a number of records, where all records are sequences of ordered events, with 

or without concrete notions of time. An example sequence database is retail customer transactions or 

purchase sequences in a grocery store showing, for each customer, the collection of store items they 

purchased every week for one month. Other examples are scientific experiments, natural disasters, and 

disease treatments, the analysis of DNA sequences, etc. Sequential pattern mining is an important 

problem with broad applications, including the analysis of customer purchase behavior, web access 

patterns, scientific experiments, disease treatment, natural disasters, and protein formations. Given a 

set of sequences, where each sequence consists of a list of elements and each element consists of a set 

of items, and given a user-specified min_support threshold, sequential pattern mining is to find all 

repeating patterns (known as frequent Sub-sequences). Support of sub-sequences whose occurrence 

frequency in the set of sequences, are not less than min_support. Frequent Sub-sequences can be used 

later by end users or management to find associations between the different items or events in their 

data for purposes such as marketing, business reorganization, prediction and planning.  Many previous 

studies contributed to the efficient mining of sequential patterns or other frequent patterns in time-

related data. Srikant and Agrawal generalized their definition of Sequential patterns that include time 

constraints, sliding time window, and named GSP that improved apriori-based algorithm 

(Ramakrishnan and Agrawal, 1996). A typical apriori-like sequential pattern mining method, such as 

GSP (Ramakrishnan and Agrawal, 1996), SPADE (Zaki, 2001), SPAM (Ayres, 2002) and so on 

adopts a multiple-pass, candidate generation and-test approach. Second approach adopts a divide-and-

conquers pattern-growth principle that Sequence databases are recursively projected into a set of 

smaller projected databases based on the current sequential pattern, and sequential patterns are grown 

in each projected databases by exploring only locally frequent fragments. These algorithms are like 

prefixspan (Pei et al, 2006), clospan, (Van and Afshar, 2003) and so on. With the increase in the use 

of the world wide web for e-commerce businesses, web services, and others, web usage mining is one 

of the most prevalent application areas of sequential pattern mining in the literature such as WAP-

MINE (Pei et al, 2000), PLWAP (Ezeife et al, 2005), BIDE (Wang and han, 2007) and so on. Typical 

applications of web usage mining fall into the area of user modeling, such as web content 

personalization, web site reorganization, prefetching and caching, e-commerce, and business 

intelligence. Many novel algorithms have early pruning methods that enable them to look-ahead to 

avoid generating infrequent candidate sequences. If a certain item (or sequence) is infrequent, then 

there is no point in growing the suffix or the prefix of the sequence (due to the downward closure of 

the apriori property). The algorithms like VMSP (Viger et al, 2014), VGEN (Viger et al, 2014), FSGP 

(Yi et al, 2011) and MaxSP (Viger et al, 2013) are in this category. This article focuses on sequential 

pattern-mining techniques based on number of output sequences; some algorithms mine all of 

sequential patterns and some other mine Partial of sequence patterns.  

 

2. Related concepts 

Let Ι={i1, i2, …in} be a unique set of items. A sequence S is an ordered list of itemsets, denoted as <s1, 

s2…sm>, where sj is an itemset which is also called an element of the sequence, and sj  Ι  (Yun, 

2008). The size |S| of a sequence is the number of itemsets in the sequence. The length,  (S), is the 

total number of items in the sequence. A sequence with length l is called an l-sequence. A sequence 

database, SDB={S1, S2, …, Sn}, is a set of tuples <sid, S>, where sid is a sequence identifier and Sk is 

an input sequence. A sequence =<X1,X2,…,Xn> is called a sub-sequence (α ) of another sequence 
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=<Y1,Y2,…,Ym> (nm), and  is called a super-sequence of the sequence α  if there exist an integer 

L (Li1<i2<..<i3m) such that X1Yi1, X2Yi2,… XnYin. A tuple <sid, S> is said contain the 

sequence α, if S is super-sequence of  (α s). The support value of a sequence  in a sequence 

database (SDB) support () (  ()) is the number of sequences in SDB that contain the sequence  (  

() = |{<sid, S>   | (<sid,S>   DB) ^ (S)}). Given the user defined minimum support threshold (  ), a 

sequence  is called a frequent sequential pattern in the sequence database if the support of the 

sequence  is no less than   (     () . 

Table 1, shows the input SDB in our running example (hypothetical SDB). Assume that a minimum 

support Threshold is 3 ( =3). This SDB has eight unique items (a,b,c,d,e,f), and six input sequences. A 

sequence S=<a(abc)(ac)d(cf)> in SDB has five itemsets: a, (abc), (ac), d, (cf) where items ‘‘a’’ and 

‘‘c’’ appear three times in different itemsets of the sequence. The size of S is 5 (|S|=5) and the length 

of this sequence is 9 ( (S)=9). Sequence <a(bc)d> is a sub-sequence of <a(abc)(ac)d(cf)>. 

Additionally, the sequence S=<a(bc)d> is a frequent sequential pattern because sequences 1, 5 and 6 

contain sub-sequence <a(bc)d> and the support 3 (  ()=3) of the sequence is no less than  ( =3). A 

sequential pattern S=<a(bc)d> is not a frequent pattern since the support 2 (S is sub-sequence of 

sequences 1 and 2) of this pattern is less than  . Based on the anti-monotone property (apriori 

property), we can know that all super-patterns of the sequential pattern such as <ag>, sequential 

patterns such as <a(ab)g>, <acg>, and <a(cd)g> are infrequent patterns, because <ag> is infrequent. 

 

Table 1. A sequence database (hypothetical SDB) 

 

 

 

 

 
Table 2. Part of the implementation of GSP on hypothetical SDB 

1.  4  4  3 

  Seq-4   Seq-4   Seq-3 

3 < a(ab)c> 3 

× 

0 

1 

< a(ab)c> 

<a(ab)d> 

<aacb> 

<aacc> 

3 

4 

4 

3 

5 

3 

3 

3 

3 

<a(ab)> 

<aac> 

<(ab)c> 

<(ab)d> 

<abc> 

<acb> 

<acc> 

<adc> 

<ebc> 

 

3. All of sequence pattern mining 

The initial algorithms mine all of frequent sequential patterns. The hypothetical SDB have 30 frequent 

sequential patterns and these algorithms mine all of them. In general, these are divided into two 

categories: apriori-base and pattern-Growth base algorithms. 

 

3.1. Apriori-based algirithms 

S(Sequence) sid 

<a(abc)(ac)d(cf)> 1 

<(ad)c(bc)(ae)bc> 2 

<(ef)(ab)(df)cb> 3 

<eg(af)cbc> 4 

<a(ab)(cd)egh> 5 

<a(abd)bc> 6 
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Apriori-based algorithm has three key features that is independent of how they are implemented: 1) 

Breadth-first Search; because in the k-th iteration of the algorithm, all sequences of length k (seq-k) 

are made, 2) Production and testing; which manufactured the candidate sequence and checked the 

amount of supports, 3) Multiple scan the database; which is a very undesirable feature of most of these 

algorithms and needs the processing time and the I/O cost. 

 

3.1.1. GSP 

GSP (Ramakrishnan and Agrawal, 1996) is apriori-based algorithm that generate candidate. If the 

candidates are not fit with memory, GSP produces only the number of candidates that are according to 

the memory (Agrawal and Srikant, 19995). This algorithm is combined apriori algorithm with time 

constraints. The variables in this algorithm include the maximum gap, minimum gap and window size. 

GSP As well as apriori-base algorithms is including both generate candidate and count support value. 

In it, a candidate with adjacent sub-seq-(K-1), which its support value is lower than    , is eliminated. 

<c> is adjacent sub-sequence of S = <s1 ... sn> if have one of two fallow condition: 1) c is derived from 

S by removing an item from s1 or sn; 2) c is derived from S by removing an item from itemset si that it 

have at least two items. In table 2 the following sequence of <(ab)c>, <a(abb)> and <abc> are  

adjacent sub-sequence of s = <a(ab)c> at C4 (C4 is set of candidate seq-4). Sequence <a(ab)b> has 

adjacent sub-sequence <aad> and given that there is not this sub-sequence in L3 (L3 is set of frequent 

seq-3), so the sequence <a(ab)d> is infrequent. Later one algorithm was created based on GPS, known 

as MFS (Mining Frequent Sequences) (Zhang et al. 2001) that suggests a two-step algorithm rather 

than multiple scans of database. MFS produce same set of frequent sequences that GSP produce, while 

MFS have better performance from GSP by reducing I/O cost (Zhao and Bhowmick, 2003). 
 

 

 
fig 1. Search strategies in network for hypothetical SDB a) showing some sequence's ID-List b) division of equivalence 

classes [a] to smaller classes and c) create a path for navigation network traversal 

 

3.1.2.   SPADE (Sequential PAttern Discovery using Equivalence classes) 

SPADE (Zaki, 2001) proposed an algorithm to find frequent sequences using the network search 

techniques. In this algorithm, all sequences are discovered only by three passes from the database 

(Zhao and Bhowmick, 2003). This approach has three key features: 1) it uses from a vertical database 

format (id-list), 2) it use From a network theory to analyze the main search space into smaller spaces 

to reduce I/O costs and 3) it uses  from two Breadth-first and deep- frist search strategies for count 

frequent sequences in per subnet. Figure 1, show these three features in this paper SDB (hypothetical 

SDB). Figure 1(a), shown vertical ID-List, and calculating the amount of support by it. ID-List rows 
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are shown with pairs <Sid, Eid> were Sid is sequence ID and Eid is transaction ID. If in sequence X   

S, x1 and x2 represent sub-sequence of prifix sub-seq-(k-2) from X then X=x1 x2 and 

 =| (X1)  (X2)|. For example, the ID-list of X=<a(ab)c)> produced from temporal join of 

x1=<a(ab)> and <x2=<aac> (figure 1(a)). Figure 1(b), shows equivalence class for mother class {[a]} 

({[aa], [ab], [a(ab)], [aac], [a(ab)c]}). In this is one subnet of the main network of hypothetical SDB. 

In Figure 1(c) solid and dash arrow drawn based on classification of figure 1(a).  For example, the 

arrow between [aa] and [aac] is solid because both them are in class [aa]. Finally it uses both depth-

first and Breadth-first search (BFS and DFS) strategies for calculating frequent sequences. Because of 

BFS process the lower level first, it prepare much more information for pruning than DFS. On the 

other hand, DFS hold only ID-List of two consecutive classes in a single path, thus it needs less main 

memory than BFS. With increasing number of frequent sequences (eg, very small support threshold 

value), may be the only practical method is DFS.  

 

3.1.3. SPAM (Sequential Pattern Mining) 

SPAM (Ayres, 2002) uses the depth-first search strategy for mining sequential patterns. An additional 

salient feature of SPAM is its property of online outputting sequential patterns of different length; 

compare this to a breadth-first search strategy that first outputs all patterns of length one, then all 

patterns of length two, and so on. On the other hand, this algorithm utilizes a depth-first traversal of 

the search space combined with a vertical bitmap representation to store each sequence. SPAM refer to 

the process of generating sequence as the sequence-extension step (abbreviated, the S-step), and it 

refer to the process of generating itemset extended sequences as the itemset-extension step 

(abbreviated, the I-step). SPAM, components including bitmap representation, S-step/I-step traversal, 

and S-step/I-step pruning all contribute to this excellent runtime. 

CM-SPADE and CM-SPAM (Philippe Fournier-Viger  et al. 2014) algorithms are respectively Versus of 

SPADE and SPAM. Co-occurrence Map (CMAP) is a new structure to store co-occurrence 

information. CM-SPADE checks pruning for each candidate but CM-SPAM checks each candidate for 

pruning. In these two algorithms, it is necessary to check for the two last items in CMAPs (stores 

every items that succeeds each item by s-extension at least min_sup times) and CMAPi (stores every 

items that succeeds each item by i-extension at least min_sup times) and it is also perform prefix 

pruning for CM-SPAM. Results show that the modified algorithms, prune a large amount of 

candidates, and are up to eight times faster than the corresponding original algorithms and that CM-

SPADE, CM-SPAM have respectively the best performance for sequential pattern mining and closed 

sequential pattern mining. 

 

3.2.  Pattern-Growth base algorithms 

Pattern-Growth base algorithms (Pei et al, 2000) emerged as a solution for the problems of previously 

algorithms (production and testing problem) after the Apriori-based methods. The main idea of this 

algorithm is based on avoidance from production candidate and search limited part of the original 

SDB (Khan and Jain, 2012). Almost all algorithms in this category are begin with construction 

representative of the main SDB and then one method is defined for segmenting the search space. 

 

3.2.1. WAP-MINE 

WAP-MINE (Pei et al, 2000) was created for mining access patterns in the site (As its name suggests). 

This algorithm consists of two key components: 1) wap-tree (YI, 2005), 2) sequence mining from 

wap-tree. This algorithm keeps the first occurrence of any item in the frequent itemset, in the header 

table, to use these items to connect to all nodes of the same type of tree. It should be noted that 

because WAP-MINE is a method to mining the access pattern of users  in websites, There is not 
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transaction with synchronous items in user  sequences (For example, a user cannot click 

simultaneously on the three links). Therefore, in the hypothetical SDB, the sequences that containing 

the transaction with synchronous items, one of its items is selected and then, Table 3 created. Figure 

2(a) shows the wap-tree for hypothetical SDB (Table 3) and figure 2(b) shows final wap-tree based on 

c transaction. Dash lines specifies Find path of frequent sequences for any item in header table. This 

algorithm uses conditional search instead of breadth-based searching (as mentioned in Apriori-based 

algorithm). Since wap-tree is much smaller than the original database size, therefore mining sequences 

in wap-tree easier. On the other hand, wap-tree construction with double-scan on SDB is the quite 

efficient (Nizar and Ezeife, 2010). This algorithm suffers from memory consumption, because the 

wap-tree algorithm does several renovations during pattern mining. To resolve this problem, PLWAP 

algorithm (EZEIFE et al, 2005) was presented that converts wap-tree to the binary tree before mining 

frequent patterns (YI, 2005).  
 

Table 3. Edited SDB for the web access (for algorithm WAP-MINE) 

 

Frequent Sub-sequences S(Sequence) cid sid 

<abadc> <abadc> 100 1 

<acbabc> <acbabc> 200 2 

<bdcb> <fbdcb> 300 3 

<acbc> <egacbc> 400 4 

<aad> <aadegh> 500 5 

<aabc> <aabc> 600 6 

 

 

fig 2. Mine frequent sequences whit WAP-tree a) the wap-tree for hypothetical SDB, b) final wap-tree based on c 

transaction 
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fig 3. database projection a) level-by-level b) bi-level 3) pseudo projection for hypothetical SDB 

 

3.2.2. Prefixspan  

Prefixspan (Pei et al, 2001) use database projection until SDB made much smaller for the next pass 

and thus faster algorithm and therefore is able to operate in large database. Figure 3(a) shown database 

projection for frequent seq-1 (for example, the prefix <a> in sequence 1 and in hypothetical SDB, 

arguments will be as <(abc)(ac)d(cf)> that is suffix of <a>). PrefixSpan have different design methods 

for database projection including level-by-level projection, bi-level projection and pseudo projection. 

Bi-level projection (Figure 3(b)) method is design triangular matrix M instead of database projection 

n*n (level-by-level projection). This matrix show   for all seq-2, for example (2,5,4)=M[<(b)>,<(a)>] 

which means that the  (<(a), (b)>),  (<(b), (a)>) and  (<(b, a)>) respectively 2, 5 and 4. The other 

method is pseudo projection that be not made any physical database and any suffix are shown by a pair 

offset values and pointers, for example in Figure 3(c), pseudo projection for sequence S1 = 

<a(abc)(ac)d(cf)>  According to the prefix <a>, the first item is <a> in first place in sequence S1 and 

so its suffix (<(abc)(ac)d(cf)>) place in point 2 of S1 and so the final amount of the sequence offset in 

the prefix <a> are {6, 3, 2}. Note that in this table (Figure 3(c)), ∅ suggests that there is no prefix used 

in sequence and $ implies that prefix in the sequence, but Suffix is null. Pseudo projection method 

avoid from physical copy of suffixes, so it is effective in time and place of implementation (Zaki, 

2001). Based on the observation, if the original SDB or projection database is too large for placement 

in the main memory, used the physical design (Pei and Han, 2004). 

 

Table 7. Output sequences of a) Closed sequential patterns mining algorithms and b) Maximal sequential pattern 

algorithms 

a 

support sequence support sequence 

3 <adc> 5 <d> 

3 <bb> 5 <abc> 

3 <db> 6 <ab> 

3 <a(ab)c> 6 <ac> 

4 <dc> 6 <bc> 

4 <aac> 3 <acc> 

4 <e> 3 <f> 

4 <ad> 3 <acb> 

4 <(ab)c> 3 <(ab)d> 
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3.2.3. Multi-dimensional sequential patterns mining 

In addition to the sequential patterns in one dimension that Considers only one feature with time 

stamps for finding frequent patterns, mine multidimensional sequential patterns can be obtained more 

and more useful information, For example, students always buy A and after a week will purchase B, 

while these laws are not arranged for other buyers. The purpose of this particular type of exploration is 

mining sequential patterns more desirable from different multi-dimensional features. In this algorithm, 

three dimensions (customer group, city and age group) are considered in the hypothetical SDB (table 

6(a)). Three different methods used to mine multi-dimensional sequence patterns (Pinto and et al, 

2001): 1) UNI-SEQ method that in which the multi-dimensional SDB (table 6(a)) be converted to 

MD-extension database. For example, in tuple t=(1, business, tonekabon, middle, <a(abc)(ac)d(cf)>) 

from the multi-dimensional SDB, the sequence S=<a(abc)(ac)d(cf)> at t can be extended to 

SMD=<(business tonekabon middle) a(abc)(ac)d(cf)> (SMD: multidimensional sequence)(table 6(b)). 

2) dim-seq method that divide multi-dimensional SDB into two following parts: dimension 

information (Xl, ..., Xm) and sequence st. In this method, first multiple multi-dimensional compounds 

and then related sequence patterns can be found. For example, tuple (*, tonekabon, *) is frequent 

because there is in three sequences (1, 4 and 6). These compounds of frequently multi-dimensional 

values are called MD-patterns. Then all sequences in accordance tuple P = (*, tonekabon, *) are 

collected. At the end, projected database of multi-dimensional pattern (MD-projected database) for P 

is established - and show like SDB|p – and sequence patterns can be mined from it. Here have 

SDB|p={<a(abc)(ac)d(cf)>, <eg(af)cbc>, <a(abd)bc>}. Based on the sequence pattern like <ac>, (*, 

tonekabon, *, <ac>) is a multi-dimensional sequence pattern. 3) seq-dim method that is same as dim-

seq but have one different; in seq-dim, first sequence patterns are mined and then related MD-patterns 

are found. For example, after scan multi-dimensional SDB, sequence S=<(ab)> is identified and then 

all information related to S Be collected in multidimensional tuple t = {(business tonekabon middle), 

(education esfahan middle), (business shiraz middle) , (business tonekabon middle)} and then MD- 

projected database for t (SDB|t) is established and MD-patterns mined from it. Here, (business, *, *) is 

a MD-patterns and so (business, *, *, <(ab)>) is a multi-dimensional sequence pattern. 
 

 

4. Partial sequence pattern mining 

A user often demanding a small set of patterns because, mining the full set of sequence patterns can be 

difficult to understand and use patterns. To overcome these problems, user use constraints that often 

represents her (or his) focus and interests on outputs of algorithms. Some of these algorithms mine 

frequent sequence patterns based on constraints, other mine closed or maximal patterns and also some 

of them mine sequential generator patterns. 

  3 <ebc> 

b 

support  Sequence 

3 <f> 

3 <ebc> 

3 <adc> 

Archive of SID

www.SID.ir

http://www.sid.ir


 

 

4.1. Constraints base algorithm 

Pei and Han expressed, seven of the constraints (Pei and Han, 2002), (Pei et al, 2002): 1) Item 

constraints indicates a set of items that should or should not present in sequences; 2) Length 

constraints (Clen), such as Clen(α)≡ (L (α)≥50 that show minimum length of sequences are 50; 3) Super-

pattern constraints: such as Cpat(α)≡<(Graphic)(computer)>α that find sequence patterns that user 

bough graphics card in first and then digital computer; 4) Cumulative constraints on addition, 

subtraction, maximum, minimum, division and so on; 5) regular statements constraints (CRE) that 

apply to the collection of items. Of course a regular express is determined on the alphabet OF 

sequence elements and with using operators such as the disjunction (|) and Kleene closure (*) (for 

example {CRE <milk*{Bread|( Bread, Yogurt)|Butter}); 6) Distance constraints is applied in SDB 

that a transaction in any sequence have time stamp. In general, the Distance constraints are shown like 

"Dur (α)   t" where Θ  {≤, ≥} and  t is a integer number; 7) Gap constraints is applied in SDB that 

a transaction in any sequence have time stamp (Dur(α)    t). Constraints are available in both 

monotonic and anti- monotonic. A CM constraint is monotonic if a sequence as α satisfies the CM 

constraint, then its Super-sequences also satisfy CM. on the other hand, a CA constraint is anti-

monotonic if a sequence as α satisfies the CM constraint, then non-empty sub-sequences of α also 

satisfy CA. 

 

4.1.1. Prefix Growth 

Prefix-Growth (Pei et al, 2002) uses prefixspan algorithm by applying a user-defined limits for 

sequence patterns mining. Cpm constraint is  prefix monotonic if for every sequence α and for the 

sequences that has α as a prefix of themselves, satisfies the constraint. Cpu constraint is prefix anti-

monotonic if for every sequence α and for every prefix of it, satisfies the constraint. The constraint is 

prefix monotonic or anti-monotonic, is said prifix-monotone that uses prefix-growth in itself.  

 

4.1.2. SPRIT 

SPIRIT family algorithms (Garofalakis et al, 1999) use regular statements (CRE) to constraints (with 

different degrees of limitations). Four different SPIRIT algorithms based on their constraints are exist 

[22]. These algorithms act differently in produce candidate sequences and candidate pruning.. These 

algorithms based on their limitation are as follow: SPIRIT (N) (N represents Naive), SPIRIT (L) (L 

represents legal), SPIRIT (V) (V represents valid) and SPIRIT (R) (R represents Regular). On the 

other hand, Relationship between their set of frequent seq-k (Fk) is as follow: Fk SPIRIT(R) Fk 

SPIRIT(V) Fk SPIRIT(L) Fk SPIRIT(N). 

 

4.2. Closed sequential patterns mining 

When long sequential patterns or small support Threshold are used, mining algorithms performance 

drastically reduced (Khan and Jain, 2012). This is not surprising; Suppose the SDB have only a long 

sequence <(a1)(a2)...(a100)>, This sequence may be produce 2
100

-1 frequent sequences if   nearly 1. An 

alternative but equally powerful way is mining only frequent closed sequences instead of mining full 

set of all frequent sequences. Closed sequential patterns called for a sequence that contains no super-

sequences with the same support.  Let FS set of all sequence patterns, in the case of CS as a closed 

sequential patterns is defined as follows: CS={α| α FS And there is no β FS such that α β and 

 ()= (β)}. In hypothetical SDB, CS has closed 19 frequent sequences ({ac, ab, bc, aac, e, a (ab) c, dc, 

acc, acb, (ab) d, ebc, (ab) c, ad, abc, adc, bb, db , d, f}), While FS has 30 frequent sequences. 
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4.2.1.  BIDE+ (BI-Directional Extension) 

BIDE+ algorithm (Wang and han, 2007) is actually developed based on PrefixSpan algorithm. 

Currently, most frequent closed sequential patterns mining algorithms as CLOSET (Pei et al, 2001), 

CHARM (Zaki and Hsiao, 2002), TFP (Han et al, 2002) and CloSpan need to maintain a set of closed 

frequent patterns (or candidates) in memory, until new sequences are mined. For avoid maintenance 

closed mined sequences, BIDE+ uses bi-directional search (BIDE paradigm is proposed for mining 

closed sequences without candidate maintenance). This search uses two concepts: Backward 

development event and Control of forward development event. let sp=e1,e2,…en as a prefix seq-n and 

e’ one item. If for any of s’p= e1,e2,…,ei-1,e’,ei,…,en (for 1 <i≤n) or s’p=e’,e1,e2,…en (for i = 1) 

exist  (sp)=  (s'p), then e' is a Backward development event of the prefix sp and sp is not closed. Full 

forward development event set for Sp prefix sequence is locally frequent items set (Items obtained 

from scanning sp projection database that their support values are equal to  (sp). Closed control bi-

directional search is in this case, if any event in forward development and Backward development of 

sp prefix does not exist, then sp  is closed sequence otherwise, sp necessarily is not closed sequence. 

So, the forward directional extension is used to grow the prefix patterns and also check the closure of 

prefix patterns, while the backward directional extension can be used to both check closure of a prefix 

pattern and prune the search space. Of course, other algorithms were developed to mine closed 

sequences, such as, CLUSEQ (Yang and Wang, 2003) that use clustering sequences and SeqIndex 

(Cheng et al, 2005) that use a parallel and combination of previous methods (Cong et al, 2005) to mine 

frequent sequences. 

4.2.2.  Clasp (Closed Sequential Patterns algorithm) 

ClaSP algorithm (Gomariz et al, 2013) has two major phases: 1) The first phase will produce a subset 

of FS that that is called frequent closed candidate (FCC) and kept in main memory; 2) the second 

phase is a post-pruning phase to eliminate all sequences that are not closed in FCC and finally acquires 

accurate frequent closed sequence (FCS). To prune the search space, ClaSP uses the access control 

method like pruning method of CloSpan algorithm (Van and Afshar, 2003). This pruning method 

remove non closed sequences and find new closed sequences by controlling the closed sequence are 

mined previously. For Sequence S <s1, s2, ..., sn> and item α, s◊α means accession α to S. This 

accession can be I-extension (Itemset extension) that just s◊iα=<t1, ... tm∪{α}> If  k tm have k<α or 

can be S-extension (sequence extension), which is s◊iα=<t1, ... tm, α}>. For example, <(ab)> is I- 

extension and <ab> is S-extension related to <(a)>. This method tries to find for all sequences 

 =<αej> and  '=<αeiej> that all are events P in P'. Typically, if at any time find α that contain eJ, 

while an item ei is between them, in which case, algorithm safely avoidance from check subtree p. 

ClaSP use some pruning rules to mine closed sequences easier:  1) For each sequence like S, if among 

all the sequences in its projection database (PD), an item α always happen before the item β (I-

extension or S-extension), in this case, PD◊α◊β=PD◊β, So   γ, s◊β◊γ is not closed. On the other hand, 

we do not need to search any sequences in the branch s◊β. For example, in projection database for 

itemset <(ab)> (PD<(ab)>={<(-c)cdc>, <dc>, <(cd)>, <(-d)c)>}), in hypothetical SDB, Given that 

<(cd)> and <cd> are available in all sub-sequences of PD, PD<(ab)d> and PD<(ab)f > both are closed 

and must be examined separately; 2) If SS’ and L(DP(S))=L(DP(S’)) in this case, for every γ of 

 (S◊γ)=  (S'◊γ). For example, in hypothetical SDB,  DP<ac>=DP<c>={<(c)(cf)>,<(bc)(bc>, <b>, <bc>, 

<(c) }and L(DP<ac>) = L(DP<c>), thereby  (<acb)>=  (<cb>). Consider the above meaning, do not need 

to grow <ac>, as all children of <c> is the same as <ac> children and vice versa and also they have 

same support value, so a sequence that begins with c, can include sequences with <ac> prefix. 

CM-ClaSP (Philippe Fournier-Viger et al. 2014) algorithm is Versus of ClaSP. This algorithm 

performance is like CM-SPAM that is noted in section 3.1. Results show CM-SPAM also prune a 
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large amount of candidates, and are up to eight times faster than the corresponding original algorithms 

and that CM-ClaSP have best performance for sequential pattern mining and closed sequential pattern 

mining. Table 4 shows five datasets characteristics that are used in this paper for compare. Table 5 

shows percentage of Candidate reduction in CM-SPADE, CM-SPAM and CM-ClaSP from SPADE, 

SPAM and ClaSP at different min_sups. In average, the Number of candidates pruned are between 50- 

98% for all but the Snake dataset (becuse Snake is very dense). Generally the number of pruned 

candidates decreases when min_sup is set lower.  
 

Table 4 . DataSets characteristics 

Type of data Avg.Seq.Length Item count Sequence count  

Web Click Stream 2.51 497 59601 BMS 

Web Click Stream 8.14 10094 10000 Kosarak 

Protein sequences 60 60 163 Snake 

sign language  65 256 800 sing 

Web Click Stream 34.74 2990 20450 FIFA 

 

Table 5. percentage of Candidate reduction in CM-SPADE, CM-SPAM and CM-ClaSP 

 Our DS BMS kosarak Snake Sing fifa 

CM-SPADE 23% - 66% 75% - 76% 98% 25% - 26% 69% 63% - 69% 

CM-SPAM 23% - 74% 78% - 93% 94% - 98% 28% 63% 61% - 63% 

CM-ClaSP 23% - 62% 79% - 93% 75% 18% 63% 67% - 68% 

 

Table 6. a) hypothetical SDB with customer group, city and age group fields, b) multi-dimensional SDB (SMD) 

 

 

 
 

Multidimensional sequences sid 

< (business tonekabon middle) a(abc)(ac)d(cf)> 1 

< (professional esfahan young) (ad)c(bc)(ae)bc> 2 

< (education esfahan middle) (ef)(ab)(df)cb> 3 

< (education tonekabon retired) eg(af)cbc> 4 

< (business shiraz middle) a(ab)(cd)egh> 5 

< (business tonekabon middle) a(abd)bc> 6 

 

4.3. Maximal sequential pattern mining 

As noted, closed sequential patterns are not included in another pattern having the same support. 

These category of algorithms, have lossless patterns but their output set is still quite large for some 

applications. Maximal sequential patterns Developed against Closed sequential patterns. In maximal 

sequential pattern algorithms, patterns are not included in another pattern. In other word, maximal 

sequential patterns are not included in other patterns. This category of algorithms have lossless 

patterns with an extra database scan but it is generally much smaller than closed patterns, for example, 

in our DS, in Closed sequential pattern algorithms we have 19 frequent sequence pattern but in 

Maximal sequential pattern algorithms, we have 3 frequent sequence pattern in output that These 

patterns included Other patterns (table 7(a) and table 7(b)).   

 

4.3.1. MaxSP (Maximal Sequential Pattern miner) 

S(Sequence) age-grp city cust-grp sid 

<a(abc)(ac)d(cf)> middle  tonekabon business  1 

<(ad)c(bc)(ae)bc> young  esfahan professional  2 

<(ef)(ab)(df)cb> middle  esfahan education 3 

<eg(af)cbc> retired  tonekabon education  4 

<a(ab)(cd)egh> middle shiraz business 5 

<a(abd)bc> middle tonekabon business 6 
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MaxSP (Philippe Fournier-Viger et al, 2013) is a new pattern-growth algorithm to discover maximal 

sequential patterns. it uses Two steps to check if a pattern S is maximal: 1) maximal-forward extension 

checking: if an item is found in a SDB that can be appended to S (after the last item), then S is not 

maximal, 2) maximal-backward extension checking: in this checking, the sequences Scanned To find 

sequences that containing S. if an item can be appended to S before the first item, or between any two 

items of S, then S is not maximal. This algorithm is Versus BIDE (without storing intermediate 

candidates in memory). MaxSP consumes less memory because less sequence need to be scanned and 

less patterns need to be created. In other word, MaxSP outperforms the BIDE algorithm in execution 

time and memory, and has better scalability. Its output is closed and maximal (CM) or maximal (M) 

sequences (table 8). 
 

Table 8. MaxSP run on hypothetical SDB 

Sequence support Statuse Sequence support Statuse 

<a(ab)c> 3 CM <(ab)d> 3 CM 

<acc> 3 CM <bb> 3 CM 

<acb> 3 CM <db> 3 CM 

<adc> 3 M <ebc> 3 M 

 

 

Fig 4. All closed/generator sequential patterns in our SDB 

4.3.2. VMSP (Vertical mining of Maximal Sequential Patterns) 

VMSP (Philippe Fournier-Viger et al, 2014) is a new vertical algorithm to discover maximal sequential 

patterns. This algorithm includes three novel strategies: 1) EFN (Efficient Filtering of Non maximal 

patterns): EFN States that A pattern cannot be contained in another pattern if its support is smaller or 

A pattern cannot contain another pattern if its support is larger. 2) FME (Forward-Maximal 

Extension): FME checks the algorithm performs a depth-first search. This algorithm grows patterns by 

appending items to smaller patterns one item at a time. In FME, checking super-pattern for a pattern S 

can be ignored if the recursive call to the search procedure with S produces a frequent pattern.  3) CPC 

(Candidate pruning with Co-occurrence map): Pruning in CPC formed in this way that for a pattern S, 

an i-extension (s-extension) with an item x will result in an infrequent patterns if there exists a pair of 

items in the resulting pattern that is not in CMAPi (CMAPS). VMSP is up to 100 times faster than 

MaxSP.  

 

4.4.  Mining sequential generator patterns 

As noted, A sequential pattern  is said to be closed if there isn't other sequential patterns like , such 

that    , and their supports are equal. A sequential pattern  is said to be a generator if there isn't 
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other sequential patterns like , such that    α, and their supports are equal. The problem of mining 

closed (generator) sequential patterns is to discover the set of closed (generator) sequential patterns. 

Figure 4, show closed and generator sequence pattern in our SDB ( =3). There are 30 sequential 

patterns, such that 19 are closed (identified by a gray color) and only 18 are generators (identified by a 

dashed red line). It can be observed that in this case, the number of generators is less than the number 

of closed patterns.  

 

4.4.1. FSGP (Frequent Sequential Generators Patterns) 

Generally, the time cost of the existing algorithms for mining sequential generator patterns is great. 

FSGP (Yi et al, 2011) is one algorithm for mining sequential generator patterns with the safe pruning 

strategy that consuming a little time cost and the mechanism of sequential generators checking fast. 

The safe pruning strategy is that for Given a sequence Sn=e1e2…en-1en , its one sub-sequence Sn-

1=e1e2…en-3en-2en while the i
th
 item is removed from the sequence Sn . If the sequence Sn substitute for 

the sequence Sn-1 safely with reference to SDB, then the sequence Sn can be pruned safely. In fact, safe 

pruning is better than the pruning method in the algorithm including the forward pruning and the 

backward pruning which consume very much time and space cost.  

 

4.4.2. VGEN (Vertical sequential generator miner) 

VGEN (Philippe Fournier-Viger et al, 2014) is a new vertical algorithm to discover generator sequential 

patterns. It includes three novel strategies to efficiently identify generators and prune the search space: 

1) ENG (Ecient ltering of Non-Generator patterns): ENG is performed using a novel structure named 

Z that stores the set of generator patterns found so far. In fact, by using the above strategy, it is 

obvious that when the search procedure terminates, Z contains the set of sequential generator patterns, 

2) BEC (Backward Extension checking): BEC strategy aims at avoiding sub-pattern checks. In other 

word, During sub-pattern checking for a pattern  , if a smaller pattern  can be found in Z such that 

the projected database is identical, then   is not a generator as well as any extension of  , and 3) CPC 

(Candidate Pruning by Co-occurrence map): Pruning in CPC formed in this way that for a pattern S, 

an i-extension (s-extension) with an item x will result in an infrequent patterns if there exists a pair of 

items in the resulting pattern that is not in CMAPi (CMAPS).  

 

5. A taxonomy of Sequential Pattern Mining Algorithms 

Much research has been done in sequence patterns algorithms Categories area that each have been 

studied one or more aspect of the characteristics of these algorithms. For example, in (Chandra and 

Sammulal, 2013) algorithm is divided into two categories: basic and extended and (Nizar and Ezeife, 

2010) has provided a more complete, Or (Nizar and Ezeife, 2010) has provided a more complete 

Category of sequential patterns mining algorithms - and the algorithms of this paper are placed in it- 

that categorized The main techniques into apriori-based, pattern-growth, early-pruning, and hybrids of 

these three techniques. This article has provided new taxonomy for these algorithms, that another 

aspect to be considered in it. Figure 5 provides a top-down hierarchical view of the taxonomy and the 

said algorithms in this paper are showed on its right category. This article focuses on sequential 

pattern-mining techniques based on number of output sequences; some algorithms mine all of 

sequential patterns and some other mine Partial of sequence patterns. So, The main techniques can be 

categorized into apriori-based, pattern-growth as the algorithms that mine all of sequential patterns, 

and others that mine Partial of sequence patterns. Each algorithm is that in both branches of 

Taxonomy (full sequence pattern mining and partial sequence pattern mining), generated only Part of 

frequent sequence patterns but it have apriori-base or pattern-Growth base characteristic. The main 
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characteristics of an Apriori-based algorithm is (1) to perform a breadth-first search and (2) combine 

pairs of patterns to generate larger patterns, and (3) to scan the database to compute the support of 

candidates. In SPAM and ClaSP, characteristics (1), (2) and (3) are not respected, since they use a 

depth-first search, combine items with patterns, and use bitwise operations to calculate support 

without scanning the database but because of generate candidates in SPAM, it is apriori-based 

algorithm. For BIDE, characteristics, (1), (2), are also not respected, since it use a depth-first search, 

does not generate candidate, and use a pattern-growth approach with database projections. For 

SPADE, there could be a case that it has some similarities to Apriori, especially if it is use with a 

breadth-first search but it can also be used with a depth-first search, and it uses a vertical database 

rather than an horizontal database. All algorithms based on SPAM such as CM-SPAM, VGEN, VMSP 

and so on, also generate candidates but they have different number of frequent sequence pattern in 

themselves output. Therefore, they were placed in different branch in the taxonomy, for example, 

VGEN mine sequential generator patterns and because the hypothetical SDB have 30 frequent 

sequential patterns, such that only 18 of them are generators, then VGEN, mine Partial of sequence 

patterns. On the other hand, the algorithms such SPAM and SPADE mine all 30 sequential patterns. 

These algorithm scan the database only once to create a structure sometimes called sid-list for each 

pattern containing a single item (a vertical database structure is used the sid-lists rather than an 

hypothetical SDB) and Then, these algorithms will recursively generate candidate patterns of larger 

size. For each candidate pattern generated, these algorithms will not scan the database to calculate 

their support. They will instead make a join operation (also called intersection operation) to calculate 

the sid-list of the pattern by joining sid-lists of smaller patterns. The sid-list allows calculate directly 

the support of a pattern without scanning the database. Thus, these algorithms only need to scan the 

database once to create the initial sid-lists of patterns containing single items and are in Apriori-base 

branch. Pattern-growth algorithms have been tested extensively on mining the web log and found to be 

fast. Some of These algorithms make projected database (or project a new hypothetical SDB) like 

Clospan, prefixspan, UNI-SEQ and so on, and others make projected trees like WAP-MINE and 

MaxSP. In general, a user often demanding a small set of patterns because, mining the full set of 

sequence patterns can be difficult to understand and use patterns. To overcome these problems, user 

use constraints that often represents her (or his) focus and interests on outputs of algorithms. Prefix-

growth and SPRIT are the examples Of these algorithms. Many algorithms like BIDE and Clasp – in 

hypothetical SDB - mined only 19 closed sequential patterns of all (30 sequential patterns). Bitwise 

operations calculate support value at each iteration. Position induction enables an algorithm to look-

ahead to avoid generating infrequent candidate sequences. The other view, some methods as SPADE, 

SPAM, VMSP and VGEN include bitwise or logical operations and some use positional tables as 

MaxSP and FSGP (These algorithms utilize a sort of position induction to prune candidate sequences 

very early in the mining process and to avoid support counting as much as possible) and others store 

support along with each item in a tree structure. One disadvantage of bitmap representations is the 

amount of computation incurred by bitwise operations used to count the support for each candidate 

sequence (Nizar and Ezeife, 2010). 
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Table 10. Comparative analysis of algorithm performance 
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Memory usage (mb) Execution time (ms) Minimum suporrt ( ) Dataset size Algorithm 

504.56 24882 Low (10%) 
Medium (250k) 

BIED+ 

 

523.47 780 Medium (30%) 

350.51 42494 Low (10%) 
Large (1M) 

842.96 7988 Medium (30%) 

156.23 2731 Low (10%) 
Medium (250k) 

Clasp 

 

67.56 796 Medium (30%) 

304.74 6115 Low (10%) 
Large (1M) 

266.56 1202 Medium (30%) 

156.23 2418 Low (10%) 
Medium (250k) 

Clospan 

 

67.56 468 Medium (30%) 

401.63 28018 Low (10%) 
Large (1M) 

123.56 1810 Medium (30%) 

552.168 13806 Low (10%) 
Medium (250k) Prefixspan 

 
107.99 686 Medium (30%) 

638.49 22698 Low (10%) Large (1M) 
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6.  Taxonomy with performance analysis 

This section presented the proposed taxonomy, illustrated in table 9 that summarizes the supporting 

theory and Advantages and Disadvantages which each this paper algorithms is based on. While table 

10 shows a comparative performance analysis of algorithms from each of the taxonomy categories. 

Experimentation was performed on a 1.6 GHz Intel Core i5-4200U with 6 gigabytes of memory, 

running Windows seven 64-bit, with the same implementations of the programs on a real data set of 

sign language utterance. This is about 250 kilobyte and it has 500 sequences (as medium data set). 

Also the algorithms tested on another data set from the novel Leviathan that Thomas Hobbes converts 

it as SDB. Each word in it is transformed to an item. This is about 1 megabyte and it has 5834 

sequences (as large size)
1
. These were run at different minimum support values: the low minimum 

support is 10% and medium minimum supports of 30% and is showed in table 10. CPU execution time 

is reported by the program of each algorithm in millisecond, while physical memory usage was in 

Megabytes (MB) by SPMF software
2
. Careful investigation of table 10 shows how the apriori-based 

Clasp algorithm could become as data set size grows from medium (| D |=250K) to large (| D |=1M), 

due to traversal of the large lexicographical tree; although it is a little faster than PrefixSpan (Pei et al, 

2004) on medium and large data sets due to the utilization of bitmaps as compared to the projected 

databases of PrefixSpan. VGEN - Except in medium size and with medium   -enjoys the fastest 

execution times, as it clearly separates itself from clospan and PrefixSpan (from the same category of 

algorithms), especially at large minimum support values when more frequent patterns are found and 

with large data sets. In medium size of dataset and medium  , Clasp Has the lowest memory 

consumption that It may for the ClaSP pruning rules. 

 

7. Conclusion 

This article presents sequential pattern mining algorithms within 1996 to 2014, and Categories them 

based on the number of frequent sequences that are mined. Elementary algorithms, extracted all of 

frequent sequence patterns that many of them may not be the user's requirements. So other algorithms 

were developed to mine subset of frequent sequence patterns. A thorough discussion of their 

characteristic features of the four categories of algorithms, with advantage/disadvantage of the 

different methods and techniques, is presented. It is also noted that literature has recently introduced 

ways to minimize support counting, although some scholars claim they can avoid it (Wang and han, 

2007 ), (CHIU et al, 2004). Minimizing support counting is strongly related to minimizing the search 

space. Due of the above, the following requirements should be considered for a reliable sequential 

pattern-mining algorithm. First, a method must generate a search space that is as small as possible. 

Features that allow this include early candidate sequence pruning with position induction and search 

space partitioning. Sampling of the dataset and lossy compression (i.e., concise representation) can 

                                                           
1 http://www.philippe-fournier-viger.com/spmf/index.php?link=datasets.php 
2SPMF is available at http://www.philippe-fournier-viger.com/spmf/index.php?link=algorithms.php 

172.26 1810 Medium (30%) 

917.86 5943 Low (10%) 
Medium (250k) 

FSGP 

 

211.96 1654 Medium (30%) 

505.35 14820 Low (10%) 
Large (1M) 

107.02 717 Medium (30%) 

154.29 1607 Low (10%) 
Medium (250k) 

VGEN 

 

756.436 483 Medium (30%) 

215.41 1654 Low (10%) 
Large (1M) 

209.95 256 Medium (30%) 
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also be used to generate a smaller search space. Second, it is important to narrow the search process 

within the search space. An algorithm can have a narrow search procedure such as depth-first search. 

Third, methods other than tree projection should be investigated for finding reliable sequential pattern-

mining techniques. Due to these issues, this paper selected the mining sequence pattern algorithms and 

reviewed performance of them and offered Taxonomy of them.  
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