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Abstract  
 

Index tracking is an investment strategy aimed to replicate the 

performance of a particular financial market which is usually shown by 

a specific index. The strategy become more popular in recent years, as a 

robust and sustainable one with a lower management and transaction 

cost in comparison to speculations and active investments. This paper 

extracted some basic features of the financial time series in order to 

cluster stocks and make an index fund (tracking portfolio) to track 

NASDAQ100 index. This is the first time of using fuzzy clustering 

methods for index tracking, which trigger us to fill this gap of literature. 

In this paper we proposed a new way of weighting to selected stocks for 

index fund based on each stock membership degree in each cluster. At 

last, the new fuzzy model was compared with an integer OR model, our 

model highly reduced the running time of the model compared to OR 

model, although its error is more than the OR model. The advantage of 

reducing time cost shows itself in a larger markets which consists of 

thousands of stocks. 
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Introduction 
In recent years investing on stock markets have become very popular, especially amongst mutual 

fund managers and pension funds. In general, there are two major strategy for investing in stock 

market: Active strategy and passive one.  
In active strategy managers expected to outperform the market return based on their experience and 

knowledge, they usually take more risk to achieve higher return than the market by frequent trading 

and speculation. They hope to beat the market and gain more benefit, although the management team 

is expensive due to high fixed payment to experts and high transaction cost of frequent trading. In this 

situation investor face both systematic risk (market risk) and unsystematic risk (Company- or industry-

specific hazard that is inherent in each investment). 

In passive strategy managers have less degree of flexibility in comparison to active managers. 

Their goal is to gain specific return which is usually market index. In this strategy investors avoid 

further risks, while it is cheaper than active investments because there is no need to number of experts 

analysts for management team and passive managers usually  invest on stocks for long term and avoid 

frequent trading which is highly reduced the transaction cost (Beasley, 2003). 

Passive investments become more popular in recent years, due to disadvantages of active 

investments. Most of active funds -a fund that invest actively- failed to beat market return, although 

best active funds achieve mush higher return than the market. Based on statistical data 80% of active 

funds could not reach their goal even (He Ni, 2013). On the other hand if an active fund can satisfy its 

objective and beat the market return in a year, still there is no guarantee to outperform the market for 

next year too (Bogle, 1992). But those who support passive investments believe that stock markets 

value gradually grow in long term and by avoiding extra risks they prefer to take a small profit of the 

market (Beasley, 2003).  

Based on the Sharp’s Capital Asset Pricing model in the market risk level no other portfolios can 

beat the market portfolio. He believes that if such a portfolio exist the law of supply and demand put 

its security prices back in the line (Sharpe, 1964). That is why most of the passive fund managers 

choose market index as their goal and the index tracking problem become a more popular issue for 

researchers. 

The easiest way to follow the market index is full replication which means invest on all stocks of 

an index relating to their market capital. But in reality it is not useful because by following this 

strategy the portfolio become so large which so many stocks have very small proportions. The index 

stocks may change over time and the index fund portfolio need to be changed repeatedly, and it force a 

lot of transaction cost to the index fund (Beasley, 2003). 

In order to avoid mentioned problems we proposed a model that assign all the market stocks in a 

limited clusters, and that make investors not to invest on stocks with the same characteristics. The 

model select just one stock from each cluster and invest on them instead of investing on all stocks. In 

fact, each selected stock is representing other index stocks. 

 

Literature review 
Looking at previous works of index tracking, we have noticed that there exist several models for 

reproducing the performance of an index using only a subset of stocks. Some models ware based on 

Markowitz model their aim were minimize variance of the difference between index return and 

tracking portfolio return. Hodges was the first one who used the Markowitz model and compare index 

tradeoff curve with tracking portfolio trade off curve (Hodges., 1976).  

Some other researchers used factor based models, in these models each stock is related to one or 

more economic factors and the model shows the relationship between them.  (Beasley and Meade, 

2004) and  (Resnick and Larsen, 1998) used a single factor model in order to minimize tracking error 

given 

a subset of shares.  (Salkin and Meade, 1990) using quadratic programing to solve the problem 

They also considered the effect of industry stratification within a tracking portfolio.  (Andrew Rudd, 

1980) present a single factor model to track S&P500 with heuristic. After him some other researchers 

like (Francesco Coriellia, 2006) expand the model to multiple factor model.  
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There is some independent models, (Roll, 1992 ) used a quadratic function to minimize tracking 

error.  (Alex Frino and D R Ghallagher, 2001) proposed a model and consider transaction cost and 

stock dividend too.  (Beasley et al, 2003) use an evolutionary algorithm for index tracking problem. 

(Nesrn Okaya & Uğur Akmanb, 2003) use constraint aggregation (CA) technique for the first time 

in index tracking problem and compare it with the normal solution however both solution leads to a 

same result but using CA reduce the time cost much more.  (N.A. Canakgoz, 2009) present a more 

advanced model based on regression, he used a mixed integer linear programming for index tracking 

and enhanced index tracking which means obtaining more profit than market return.  (Diana Barro and 

Elio Canestreli, 2009) present a multistage tracking error model and solve it in stochastic 

programming framework. They also consider about transaction cost and liquidity components in their 

model. 

(Christian Dose and Silvano Cincotti, 2005) describe a stochastic optimization technique based on 

time series clustering for index tracking problem. First they select a subset of stocks from the market 

to construct the tracking portfolio and in the second stage they use stochastic optimization to weight 

the selected stocks. Finally they show that using clustering enhanced the results.  

 

Portfolio selection model 

As presented by (Cornuejols G and Tutuncu, 2007) the model selects stocks for a tracking 

portfolio. After solving the model, the selections are weighted based on their market value. There are 

numerous measures of similarity between assets. We use their work as a benchmark for validation of 

our model (Chen Chen, 2012). 

(1) ρ
  
                                                

Suppose we construct a portfolio of q assets from a target index of n assets. Let ρ
  
 represent the 

similarity between asset I and asset j. 

Let    represent if asset j is selected to be in the portfolio (1 if true, 0 otherwise). Let     represent 

whether asset j is a representative of stock I,     is 1 if j is the most similar asset in the portfolio to i, 0 

otherwise. 

                        

 

   

 

   

 

           :    
 
       (portfolio size constraint) 

            
     

 

   

   

(each stock has exactly one representative in the portfolio) 

             
        

 

        

(stock must be in the portfolio to be a representative) 

             
        

 

              

 

Having solved this model, a weight    is calculated for each selected asset j using the sum of the 

market value,   , of each stock from the index it is representing 
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(2) 
      

 

   

    

(3)   

   
 
   

 

 

Fuzzy C-means 
Fuzzy c-means (FCM) is a method of clustering which allows one piece of data to belong to two or 

more clusters. This method -developed by (Dunn, 1973) and improved by (Bezdek, 1981)- is 

frequently used in pattern recognition. It is based on minimization of the objective function showed in 

equation (4). 

 

        
  

   
 
            

          (4) 

 

Where m is any real number greater than 1,     is the degree of membership of    in the cluster j, 

   is the ith of d-dimensional measured data,    is the d-dimension center of the cluster, and ||*|| is any 

norm expressing the similarity between any measured data and the center. 

Fuzzy partitioning is carried out through an iterative optimization of the objective function shown 

above, with the update of membership     and the cluster centers   , equation (5) shows the formula of 

updating      and in equation (6) shows the formula of     

 

    
 

  
         

         
 

 
   

 
   

 
(5) 

   
    

    
 
   

    
  

   

 
(6) 

This iteration will stop when, the model reach the maximum number of iteration or minimum 

amount of improvement, whereas k are the iteration steps. This procedure converges to a local 

minimum or a saddle point of   . The algorithm is described in appendix 1 too. 

In our model we used Euclidian distance function, and defined maximum number of iteration 1000, 

and minimum amount of improvement     . Another crucial parameter of this model is the amount of 

m, which we use hill climbing to find the best value of it for our model, we start from m=1 and 

increase it 0.1 each time to find the best value of it and finally find out that the best value of m is 2.2 

for our model. The procedure of running model is shown as a flow chart in figure 1. 

After running the FCM model we choose stocks with highest membership degree from each cluster 

as representatives of other stocks and invest on them. The suitable weight of investing on each stock is 

calculate as follow: 

   
          
 
   

    
 
   

 
(7) 

In which,    is the weight that must be invest on stock j that is the selected stock from cluster j 

because it had the highest membership degree. And     is the market capital of stock i. 
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Figure 1- Flow chart of running model procedure 

Data 
In order to implement the model we used NASDAQ market data set to track NASDAQ100 index 

which consist of 100 different stocks. We used log-return of these stock for 1008 days. 708 records are 

used to run the model and the other 300 records are used for testing the model. We omit 6 stocks out 

of 100 stocks due to lack of records (less than 1008days).  

We extract 4 features from all stocks time series in order to implement fuzzy c-means algorithms 

that is shown in table 1. 

We defined 4 features for each stocks which is clustered by them. First of all daily log-return of 

each stock is calculated and some features extracted from that. Feature 1 is the standard deviation of 

daily returns for each stock. Feature 2 is the average of daily return of each stock. Feature 3 is the 

correlation between each stock daily returns and the index daily returns. And feature 4 is Entropy 

which is going to be discuss in next section. Using entropy as a feature for index tracking is another 

contribution of this paper. 

 
Table 1- stock features 

feature 1 feature 2 feature 3 feature 4 

Standard deviation Mean Correlation Entropy 

 

 

Entropy 
Quantifying  the  amount  of  regularity  for  a  time  series  is  an  essential  task  in  understanding  

the  behavior of a system. One of the most popular regularity measurements for a time series is the 

sample  entropy (SampEn) (Richman & Moorman, 2000) which is an unbiased estimator of the 

conditional probability that two similar  sequences of m consecutive data points (m is the embedded 

dimension) will remain similar when one  more consecutive point is included (Costa, et al., 2003). The 

SampEn characterizes complexity strictly on a time scale defined by the sampling procedure which is 

used to obtain the time series under evaluation. However,  the  long-term  structures  in  the  time  

series  cannot  be  captured  by  SampEn.  In  regard  to  this  disadvantage,  (Costa, et al., 2002) 

proposed  the  multiscale  entropy  (MSE)  algorithm ,  which  uses  sample  entropies  (SampEns)  of  

a  time  series  at  multiple  scales  to  tackle  this  problem (Shuen-De Wu, et al., 2013). 

Essentially,  the  MSE  is  used  to  compute  the  corresponding  SampEn  over  a  sequence  of  

scale factors.  For an one-dimensional time series,                  , the coarse-grained time 

series,      can be constructed at a scale factor of τ, according to equation (8). 

   

  
    

 

 
   

  

          

 
    

 

 
 

(8) 

 

Row data 

Calculate daily log-return of each stock 

Calculate 4 features for each stock  

Run FCM model in order to find each stock degree of membership in 
each cluster and Select one stock from each cluster for investing 

Calculate weights and invest in a suitable proportion in each selected 
stock 
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As shown in Figure 2, the coarse-grained time series is divided into non-overlapping windows of  

length τ,  and  the  data  points  inside  each  window  are  averaged.  We then define the entropy 

measurement of each coarse-grained time series as the MSE value. In this paper, the SampEn is used 

as the entropy measurement. The algorithm proposed in (Pan, et al., 2011) is repeated here, and we 

refer to the algorithm as follow. 

For i = 1:N 

{ 

For j = i+1:N 

{ 

if( |     -       | < r & |      -       | < r ) 

{ 

     =     +1 

if( |      -      | < r ) 

     =    +1 

} 

} 

} 

SampEn = -log (     /     ) 

 

In the whole study of this paper, the sample entropy of each coarse grained time series is calculated 

with m = 2 and r = 0.15σ [2], where σ denotes the standard deviation (SD) of the original time series 

(Shuen-De Wu, et al., 2013). 

Entropy measurements are highly dependent on the length of time-series. As the length of each 

coarse-grained time series is equal to that of the original time series divided by the scale factor, τ, the 

variance of entropy measurements grows as the length of coarse-grained time series is reduced. The 

estimation error of a conventional MSE algorithm would be very large at large scale factors. In the 

following section, composite multiscale entropy (CMSE), is proposed to overcome this problem 

(Shuen-De Wu, et al., 2013). 

 

Composite Multiscale Entropy 

As shown in Figure 3, there are two and three coarse-grained time series divided from the original 

time series for scale factors of 2 and 3 respectively. The kth coarse-grained time series for a scale 

factor of  ,   
   

      
   
     

   
       

   
  is defined as in equation (9). 

    
    

 

 
   

      

          

 

 

    
 

 
           

(9) 
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Figure 2- Schematic illustration of the coarse-grained procedure (Shuen-De Wu, et al., 2013) 

 
Figure 3- Schematic illustration of the CMSE procedure (Shuen-De Wu, et al., 2013) 

In the conventional MSE algorithm, for each scale, the MSE is computed by only using the first 

coarse-grained time series,   
   

: 

MSE(x,      )=SamEn(  
       ) (10) 

In the CMSE algorithm, at a scale factor of τ, the sample entropies of all coarse-grained time series 

are calculated and the CMSE value is defined as the means of τ entropy values that is shown in 

equation (11): 

CMSE(x,      )= 
 

 
          

         
    (11) 
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The MATLAB code of CMSE is proposed in appendix 2 (Shuen-De Wu, et al., 2013). 

 

Conclusion and results 
We run both FCM and OR model to separate the market into 5 clusters and construct the index 

fund –tracking portfolio- we used the first 708 records to run both models and the last 300 records to 

test them and calculate the error. Error is calculated as follow for both model just like (Beasley, et al., 

2003): 

 

Error =STD(tracking portfolio return – index return) (12) 

 

Our model highly reduced the running time of the model compared to OR model, although its error 

is more than the OR model. The advantage of reducing time cost shows itself in a larger markets 

which consists of thousands of stocks. Table 2, shows the results of both model. 

 
Table 2-results of FCM and OR model 

model Error %change Time (s) %change 

OR 0.014   554.735   

FCM 0.0167 19.2857 24.536 -0.95577 

 

For future works, using other features of time series or using another method of fuzzy clustering 

may reduce the error while keep the time cost of the model in an extremely low level. 
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Appendix 1 

The FCM algorithm is composed of the following steps: 

1. Initialize U=[uij] matrix, U
(0)

 

2. At k-step: calculate the centers vectors C
(k)

=[cj] with U
(k) 

 

             
    

    
 
   

    
  

   

 

3. Update U
(k)

 , U
(k+1) 

    
 

  
         

         
 

 
   

 
   

 

 

4. If || U
(k+1)

 - U
(k)

||<  then STOP; otherwise return to step 2. 

Appendix 2  
The Matlab Code for the Composite Multiscale Entropy Algorithm 

 

function E = CMSE(data,scale)  

r = 0.15*std(data);   

 

for i = 1:scale   % i:scale index  

    for j = 1:i   % j:croasegrain series index  

        buf = CoarseGrain(data(j:end),i);  

        P(i) =SampEn(buf,r);  

    end  

end  

 SP=sum(P); 

 E=SP/scale; 
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%Coarse Grain Procedure  

% iSig: input signal ; s : scale numbers ; oSig: output signal   

 

function oSig=CoarseGrain(iSig,s)  

N=length(iSig); %length of input signal  

for i=1:1:N/s  

    oSig(i)=mean(iSig((i-1)*s+1:i*s));  

end  

 

%function to calculate sample entropy. See Algorithm 1  

function entropy = SampEn(data,r)  

l = length(data);  

Nn = 0;  

Nd = 0; 

for i = 1:l-2  

    for j = i+1:l-2  

        if abs(data(i)-data(j))<r && abs(data(i+1)-data(j+1))<r  

            Nn = Nn+1;  

            if abs(data(i+2)-data(j+2))<r  

                Nd = Nd+1;  

            end  

        end  

    end  

end  

entropy = -log(Nd/Nn); 
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