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Abstract:  

Problem of scheduling in permutation flowshop is dealt with by minimizing the 

makespan. If there are more than three machines, then it is NP-compelet problems 

and should be solved by metaheuristic algorithm. The objective of this article was 

to minimize total flowtime of jobs. To this end, the algorithm of 

electromagnetism-like method (EM) was applied, which utilized an attraction-

repulsion mechanism to move the sample points toward optimality. The 

computational results demonstrated that EM was robust in practice. Moreover, 

this algorithm had two other advantages: i: simplicity of application and ii: 

occupying minor memory capacity. In the first stage, the base algorithm was 

developed by compensating for the lack of convergence. In the second stage, the 

parallel algorithm was applied. Finally, results of the algorithm were compared 

with those of other algorithms. 

Keywords: Permutation flowshop; Scheduling; Makespan; Total flowtime; 

Electromagnetism 
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1. Introduction 

   In a flowshop scheduling problem (FSP), there are n independent jobs {J1 , . . . , Jn } which 

should be processed on m different machines {M1 , . . . , Mm }. Each job is composed of m 

operations and every operation needs a different machine. Oij refers to the operation on 

machine i of job j. A processing time Pij is required for every operation. In a flowshop, all 

jobs have the same processing order on machines. 

Because of following a technological order on the machines for different jobs, the objective is 

to find an ordering of the jobs on the machines or a sequence which could optimize a 

considered criterion. Thus far, the most common criterion has been minimization of total 

completion time of the schedule, which is often referred to as makespan (Cmax ). Also, some 

other interesting variations exist for this problem (see [1] or [2]): 

• All operations are independent and available for processing at time 0. 

• All m machines are continuously available. 

• Each machine i can process at most one job j at a time. 

• Each job j can be processed only on one machine i at a time. 

• Processing of a given operation Oij cannot be interrupted; i.e. no preemption is allowed. 

• Setup and removal times are sequence-independent and included in the processing times; 

otherwise, they are negligible and can be ignored. 

• In-process inventory is allowed. If a given operation needs an unavailable machine, then the 

operation joins an unlimited queue on that machine. 

Following the four parameter notation A/B/C/D by Conway et al. [3], the problem can be 

classified as n/m/F 

Fmax. 

Graham et al. [4] proposed a more recent three-parameter notation ( / / )and the problem was 

denoted as F //Cmax. 

   FSP is known to be NP-complete in the strong sense when m >3 (see [5]); if m=2, 

Johnson's algorithm [6] achieves an optimal solution in polynomial time. In general, (n!)m 

schedules have to be assumed ((n!)M−2 for Cmax criterion). 

   This paper simplified FSP, which 

was permutation FSP or PFSP. In the PFSP, job passing is not permitted; in other words, 

processing sequence of the jobs is the same for all the machines. Accordingly, n! schedules 

are possible and the problem is then denoted as n/m/P /Fmax or as F /prmu/Cmax (see [2]). 

 

2. Available methods for the PFSP 

Generally speaking, the PFSP can be solved using either exact or heuristic methods. The 

former methods are only practicable in small instances (less than 15–20 jobs); even in that 

case, solution times tend to be high. However, some types of exact techniques can be applied 

for obtaining optimal solutions for large instances when starting from the high quality, near-

optimal solutions obtained by advanced metaheuristics. Heuristic approaches have received 

great focus of research efforts. Heuristics for the PFSP can be divided into constructive and 

improvement methods; the former are techniques which construct a feasible schedule from 

scratch and the latter are algorithms that seek to improve a previously generated schedule. 

Many constructive heuristics are available (for a comprehensive review, refer to 

[4,5,6,7,8,9,10,11] ). NEH is a contractive heuristic as the best type of the algorithm 

concerning time of solution [4]. Its improvement methods can be found in [12,13]. 

Metaheuristics method is an improved heuristic method, in which tabu search, genetic 

algorithm, ant-colony and simulated annealing and other hybrid method are observed. First, 
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simulated annealing method was proposed in [14,15] and then ant-colony was introduced in 

[20]. Genetic algorithm was the next one which was proposed in [21,22,23,24,25]. The focus 

of this paper was on the electromagnetism-like method (EM) [27] as an optimality 

metahuristic method, which is used for solving the problems that cannot be solved within a 

reasonable time.  

 

 

2. Formulating the permutation flowshop 

Scheduling the problem 

n is total number of jobs which should be scheduled, m is total number of machines in the 

flowshop, ∂ is the ordered set of jobs which are already scheduled out of n jobs (partial 

sequence), q(∂,j) is completion time of partial sequence ∂ on machine j (i.e. release time of 

machine j after processing all the jobs in partial sequence ∂),and q(∂i,j) is completion time of 

job i on machine j when the job is appended to partial sequence ∂. 

To calculate the start and completion times of jobs on machines in permutation flowshops, 

recursive equations are applied: 

   Initialize q(∂i,0), as completion time of job i on machine 0, equal to zero. This time is 

availability time of a job in the flowshop and is equal to 0 for all the jobs in case of static 

flowshops. 

 

For j=0 to m do 

q(∂i,j)=max(q(∂,j); q(∂i,j-1))+Pij 

For time of job i, Ci is given by: 

Ci = q(∂i,m)   

After scheduling all jobs, total flowtime F and makespan M are obtained as 

follows: 

 F= 


n

i

Cji
1

       

and 

  M = max  {Ci , i = 1 , 2, …..,  n }   

It is worth noting that q(ф,j) is equal to 0 for all j, where ф is a null schedule. 

   To calculate start and completion times of jobs on machines in permutation flowshops, 

recursive equations are applied: 

   Initialize qðri; 0Þ, as completion time of job i on machine 0, equal to zero, which indicates 

availability time of a job in the flowshop and is equal to 0 for all the jobs in case of static 

flowshops. 

 

3. Explaining electromagnetic algorithm for solution (pfsp) 

Sample point toward optimality: In this algorithm, any response is considered a charged 

particle. These particles that are more optimized have more change and attract other particles. 

On the other hand, those particles that are less optimized repulse other particles. 

Main idea of this article was that better points might exist around the optimal point. thus, 

weak points were moved toward the optimal point.  

 

ALGORITHM 1. EM(m) 
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1: Initialize() 

2: while termination criteria are not satisfied do 

3: Local() 

4: CalcF() 

5: Move() 

6: end while 

 

Em algorithm is used for solving the problems which require optimality and applies 

attraction-repulsion mechanism to move  ….  

In algorithm 1, first, an initial population is produced, which can be done in two methods: 

either by random method or by NEH method. The second method which applies the NEH 

method is much better than the first one. The FRB [29] method which was used in this article 

was more optimized than the two previous methods. 

(see the following code). 

 

ALGORITHM 2. FRB 

Procedure FRB 

  Calculate   



m

i

NnpijPj
1

,                          

  Sort Pj in a decreasing order: 

  π := ∅ 

  For step1:= 1 to n  

 j := job(Pj [step]) 

Test job j in all possible positions of π% (Taillard's accelerations) Insert job j in π in position p 

resulting in the for the lowest Cmax. 

     Step 2: = max(1, p − k) to min(step, p + k) 

 Extract job h in position of step2 from π 

 Test job h in all possible positions of π % 

 (Taillard's accelerations) 

 Insert job h in π in the position resulting in the lowest Cmax. 

Endfor 

  Endfor 

End. 

 

P: poison of the new job 

K: poison around the new job from outer loop 

and π: partial sequence 

FRB is an NEH algorithm, which is the same as NEH with only one difference that only one 

inner loop has been added to it. All the jobs between (p-k…p+k) are tested in this inner loop 

to achieve the best sequence. The idea behind this method is that these jobs which are farther 

than the newly entered point in the outer loop denoted greatly affect the optimal answer. 

However, by changing the point around the new point, a better answer may be finally 

obtained. In this algorithm, if k value is assumed lower, the algorithm complexity would be 

equal to the NEH complexity.   

In the next stage, a series of tasks is performed for discovering the answers. Therefore, a local 

search is applied over all or some points of the population, assuming that a better optimized 

point exists around them. 
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This local search is done at some specific points. 

It is possible to perform this search over all the points; but, speed of the process is reduced. 

In this article, a local search which searched around a specific point (as explained it in the 

cacf() function and called perturbation) was used.  

The perturbation point goes out of the local region and enters another feasible region. 

Afterward, a local search is started around this point  and the existing point is replaced with 

those points with better answers and so on. 

   Afterward, the exerted force on each of the elements of the population is computed. After 

computing the force, each of the elements is moved in the direction of the exerted force.  

In this algorithm, every answer is considered a point in n-dimensional space. Value of each 

dimension should be based on the following condition. 

including: Ln< Xn  <Un ; 

n  dimension of the problem, 

Uk  upper bound in the kth dimension, 

Lk lower bound in the kth dimension, and 

f (x) points to the function to be minimized. 

To compute value of the exerted force, the particle charge must be computed as follows: 

q
i
=exp (n







m

n

besth

besti

xfxf

xfxf

1

)()(

)()(
 

   In each iteration, charges of the points were computed according to values of their objective 

function. However, in the present heuristic, charge of each point was not constant and 

changed from one iteration to another. 

   Charge of each point i, q i, determines point I's power of attraction or repulsion.  

   Accordingly, the points with better objective values possessed higher charges. The fraction 

was multipled by dimension n because, in higher dimensions, the number. 

of points in the population tended to get large. Consequently, the fraction might become very 

small and cause overflow problems in calculating the exponential function. 

    Note that, unlike electrical charges, no signs were attached to the charge of an individual 

point in Eq. (2). Instead, direction of a particular force between two points was determined 

after comparing their objective function values. Hence, total force F i exerted on point i is 

computed by Eq. (2). 
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    As seen in Eq. (2), among the two points, the point that had a better objective function 

value attracted the other one. Contrarily, the point with the worse objective function value 

repelled the other.  

   In calculating the force, if the algorithm had premature convergence, none of the feasible 

points were searched for and the optimal point might not be found. In order to prevent 

premature convergence, Eq. (2) was modified: 

(2) 
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     In order to preclude premature convergence, the current population was somehow 

"perturbed" so that at least one of the points had a chance to move to the possibly omitted 

parts of the feasible region. Hence, one of the points in the population other than the currently 

best point was selected as the "perturbed point", as denoted by xp  (refer to Eq. (3)). 

 mixxx ibestp ,...2,1,maxarg   

The perturbed point (xp) was selected as the farthest point from the currently best point while 

λ is uniformly distributed between 0 and 1 and  is used for perturbating the component force 
























)()(,)(

)()(,)(

2

2

jp
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jp
jp

pj

pj

jp
pj

p

j

xfxiff
xx

qq
xx

xfxiff
xx

qq
xx

F




 

Finally, total force vector Fi exerted on each point was calculated by adding 

the individual component forces; i.e.: 

.,...,2,1, miFF

i

j

m

ij

i 


 

Refer to algorithm 2: 
if the random variable λ was less than the parameter v, direction of the component force 

would be reversed. Consequently, one point existed in the population, for which direction of 

movement might be reversed. 

 

ALGORITHM 2 CalcF () 

1.  mixxx ibestp ,...,2,1,maxarg   

 

tomdoforj

tomdofori

endfor

F

xfxf

xfxf
nq

tomdofori

i

m

n

besti

besti
i

1.7

1.6

.5

0.4

))()((

)()(
exp(.3

1.2

1

















 

thenxifx

jthenifi
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

.9

.8
 

2
)(.10
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ji
iji

j
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qq
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
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2
)(.13

ij

ji
iji

j

xx

qq
xxF


  

vthenif .14  

 tionverseDirecFF i

j

i

j Re.15   

endif.16  

endif.17  

thenxfxfif ij )()((.18   

 AttractionFFF i

j

ii .19  

else.20  

 pulsionFFF i

j

ii Re.21   

endif.22  

endif.23  

endfor.24  

endfor.25  

4. Moving along total force vector (move) 

After evaluating total force vector F i, point i was moved in the force direction by a random 

step length as in Eq. (6). In this equation, the random step length is assumed uniformly 

distributed between 0 and 1. RNG denotes the allowed range of movement toward lower 

bound lk or upper bound uk for the corresponding dimension. 

)(RNG
F

F
xx

i

i
ii      mi ,...,2,1  

Algorithm 3 demonstrates the move procedure. Note that, the best point, Xbest , is not moved 

and is carried to the subsequent iterations. 

 

ALGORITHM 3 Move 

tomdofori 1.1   

bestthenifi .2  

)1,0(.3 U  

i

i
i

F

F
F .4  
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i

k

j

k

i

k xuFxx    

else.8  

9. )( k

i

k

i

k

j

k

i

k lxFxx    

endif.10  
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endif.11  

endfor.12  

endfor.13  

 

Electromagnetism as a parallel algorithm one of the factors of hawing improved result is that 

larger population should exist. By increasing size of the initial population, achieving optimal 

result would be changed.  

EM the end: population growth would have a negative effect on speed of the process.  

An alternative solution for speed improvement of the process and optimization of the 

algorithm efficiency is through applying parallel populations. 

In this method, a large population is divided into minor ones, which has three advantages: 

 A higher volume of feasible region is searched.  

 Each of the minor populations can be processed by a separate processor, giving the 

advantage of applying parallel processing. 

 The algorithm speed is increased.  

If the population has p elements, it is divided to groups of M/7. By applying the algorithm to 

each of the groups, the answer would move toward an optimal condition. 

in groups of   M/7 . by applying algorithm an each of the groups , an answer more teward. 

 

5. Computational experience 

  In this section, the proposed EM is compared with other simulated annealing, tabu search 

and some other state-of-the-art techniques for the PFSP. 

   The compared methods included the NEH heuristic by Nawaz et al. enhanced by Taillard 

[22] (NEHT), GA by Chen et al. (GAChen), simulated annealing by Osman and Potts 

(SAOP), tabu search by Widmer and Hertz (Spirit), GA by Reeves (GAReev), hybrid GA by 

Murata et al. (GAMIT), iterated local search procedure by Stützle (ILS), GA by Aldowaisan 

and Allahvedi adapted to PFSP (GA_AA) and finally the recent ant-colony algorithms by 

Rajendran Ziegler [27] referred to as M-MMAS. 

   For the evaluation, the well-known standard benchmark set by Taillard [8] which was 

composed of 120 different problem instances ranging from 20 jobs and 5 machines to 500 

jobs and 20 machines was used. The benchmark contained 10 repetitions for each of the 

considered combinations of n and m. The results were averaged for all the 10 instances in a 

given combination. 

   For evaluating different methods, a similar performance measure was applied by the 

following equation: 

R
Bestsol

BestHeuR

i

solsoli /)100(
1







 

Where Heusoli is the solution given by any of the R repeti- 

tions of the considered algorithms; in this case, Best sol is either the optimum solution or the 

lowest known upper bound for Taillard's instances as of late April 2007 (these values are 

available in Taillard [45]). 

In Table 1, Em algorithm shows the ability to compete with the mentioned algorithms. 

Moreover, better results were achieved, especially in the case of obtaining a better answer.  
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6-Conclusions 

In this paper, first, the related literature of PFSP was reviewed and then its formulation was 

stated. Afterward, the FRB algorithm was used for the initial populations. 

The electromagnetic algorithm was presented and the base algorithm was improved. 

Paralleling the algorithm and solving problems through this algorithm were performed 

afterward. Finally, it was changed on Taillared's benchmark. 

This algorithm moved all the points monotonously toward the optimal point. In the initial 

population section, it was distributed in the whole feasible region. Then, a local search was 

used, which had to be a monotonous one due to searching all the areas around all the points. 

Accordingly, the effect of the answer was observed. Monotonous initial population and local 

search on this issue will be investigated in future. 

 

 

 

 

 

 

Table1  

Average relative percentage deviation (RPD) over optimum solution or lowest known upper 

bound for Taillard's instances obtained by the evaluated methods 

n-m EM GA 

HG

A 

SAO

-P 

GAR

-

EEV 

M-

MM

S ILS 

NEH

-T 

SPI-

RIT 

GAC

-HEN 

GAM

-IT 

GA

_ 

AA 

20_5 0.90 0.29 0.2 1.47 0.71 0.08 0.29 3.35 5.22 3.67 3.28 0.08 

20_10 2.56 0.95 0.55 2.57 1.97 0.09 1.26 5.2 5.86 5.03 5.53 1.41 

20_20 1.94 0.56 0.39 2.22 1.48 0.07 1.04 3.73 4.58 4.33 4.33 1.37 

50_5 0.54 0.07 0.06 0.52 0.23 0.02 0.12 0.84 2.03 1.96 1.96 0.37 

50_10 3.02 1.91 1.72 3.65 2.47 1.14 2.38 5.12 5.88 6.25 6.25 3.35 

50_20 3.36 3.05 2.64 4.97 3.89 2.06 4.19 6.2 7.21 7.53 7.53 4.52 

100_5 0.16 0.1 0.08 0.42 0.18 0.02 0.12 0.46 1.06 1.33 1.33 0.24 

100_10 0.97 0.48 0.7 0.17 1.06 0.42 0.85 2.13 5.07 3.66 3.66 1.61 

100_20 1.62 3.12 2.75 4.9 3.84 2.52 3.92 5.11 10.2 9.7 9.7 4.73 

200_10 0.98 0.54 0.5 1.33 0.85 0.32 0.54 1.43 9.03 6.47 6.47 1.1 

200_20 2.86 2.88 2.59 4.4 3.47 2.18 3.34 4.37 16.2 14.56 14.56 4.2 

500_20 1.86 1.65 1.56 3.48 1.98 1.09 1.82 2.24 13.6 12.47 12.47 1.98 
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