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Abstract  
 

In this paper, we study the Cohen-Macaulay of ideal I2(G), where 

I2(G)=<xyz | x-y-z is 2-path in G>. Also, we determined the 2-

projective dimension R-module, R/I2(G) denoted by pd2(G), of some 

graphs. 
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Introduction 
 

A simple graph is a pair G=(V,E), where V=V(G) and E=E(G) are the sets of vertices and 

edges of G, respectively. A walk is an alternating sequence of vertices and connecting edges. 

A path is a walk that does not include any vertex twice, except that its first vertex might be 

the same as its last. A path with length n denotes by P_n. In a graph G, the distance between 

two distinct vertices x and  y, denoted by d(x,y), is the length of the shortest path connecting x 

and y, if such a path exists: otherwise, we set d(x,y)=∞. The diameter of a graph G is 

diam(G)=sup{ d(x,y) : x and y  are distinct vertices of  G}.. Also, a cycle is a path that begins 

and ends on the same vertex. A cycle with length n denotes by Cn. A graph G is said to be 

connected if there exists a path between any two distinct vertices, and it is complete if it is 

connected with diameter one. We use Kn  to denote the complete graph with n vertices. For a 

positive integer r, a complete r-partite graph is one in which each vertex is joined to every 

vertex that is not in the some subset. The complete bipartite graph with part sizes m and n is 

denoted by Km,n. The graph K1,n-1 is called a star graph in which the vertex with degree n-1 is 

called the center of the graph. For any graph G, we denote N[x]={ yϵ V(G) : (x,y)  is  an edge 

of G}.Recall that the projective dimension of an R-module M, denoted by pd(M) , is the 

length of the minimal free resolution of M, that is, pd(M)=max{I | βi,j (M)≠0 for some j}. 

There is a strong connection between the topology of the simplicial complex and the structure 

of the free resolution of  K[Δ]. Let βi,j(Δ) $ denotes the N-graded Betti numbers of the 

Stanley-Reisner ring K[Δ]. 
To any finite simple graph G with the vertex set V(G)={x1,…,xn} and the edge set E(G), one 
can attach an ideal in the Polynomial rings R=K [x1,…,xn] over the field K, where ideal  I2(G) 
is called the edge ideal of G such that I2(G)=<xyz | x-y-z is 2-path in G>.  Also the edge ring 
of G, denoted by K(G) is defined to be the quotient ring K(G)=R/I2(G). Edge ideals and edge 
rings were first introduced by Villarreal [5] and then they have been studied by many authers 
in order to examine their algebraic properties according to the combinatorial data of graphs. In 
this paper, we denote Sn for a star graph with n+1 vertices. 
 

Cohen-Macaulay of ideal I2(G) and pd2(G) of some graph G 
 
Definition 1. Let  be a graph with vertex set . Then a subset  is a 2-vertex cover for  if for 

every path  of  we have . A 2-minimal vertex cover of  is a subset  of  such 

that  is a 2-vertex cover, and no proper subset of  is a vertex cover for . The smallest cardinality of 

a 2-vertex cover of  is called the 2-vertex covering number of  and is denoted by . 

 
Example 2. Let  be a graph shown in the figure. Then the set  is a 2-minimal vertex 

cover of  and . 
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Definition 3. Let  be a graph with vertex set . A subset  is a -independent if for even  of 

 we have . The maximum possible cardinality of an -independent set of , 

denoted , is called the -independence number of . It is easy see that 

 

 

=|V(G)|. 

 

Definition 4. Let  be a graph without isolated vertices, Let  the polynomial ring 

on the vertices of  over some fixed field . The 2-pathes ideal  associated to the graph  is the 

ideal of  generated by the set of squar-free monomials  such that  is the path of , that is 

. 

 

Proposition 5. Let  be a polynomial ring over a field  and  a graph with vertices 

. If  is an ideal of  generated by , then  is a minimal prime of  if 

and only if  is a 2-minimal vertex cover of . 

Proof. It is easy see that  if and only if  is a 2-vertex cover of . Now, let  is a 2-minimal 

vertex cover of . By Proposition 5.1.3 [5] any minimal prime ideal of  is a face ideal thus  is a 

minimal prime of . The convers is clear. 

 
Corollary 6. If  is a graph and  its 2-path ideal, then 

 

. 

 

Proof. If follows from Proposition 5 and the definition of . 

 

Definition 7.  A graph  is 2-unmixed if all of its 2-minimal vertex covers have the same cardinality. 

 

Definition 8. A graph  with vertex set  is 2-cohen-Macaullay over field  if 

the quotient ring K[x1,…,xn]/I2(G) is cohen-Macaulay. 

 
Proposition 9. If  is a 2-cohen-Macaulay graph, then  is 2-unmixed. 

Proof. By corollary 1.3.6 [5], . Since  is cohen-Macaullay, all 

minimal prime ideals of  have the same height. Then by Proposition 5, all 2-minimal vertex 

cover of  have the same cardinality, as desired. 

 

Proposition 10. If  is a graph  and  its connected components, then  is 2-cohen-

Macaulay if and only if for all ,  is cohen-Macaulay. 

Proof. Let  and  for all . Since  

 

, 
Hence the results follow from Corollary 2.2.22 [5]. 
 
Definition 11. For any graph  one associates the complementary scimplical complex , which 

is defined as 
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This means that the facets of  are precisely the maximal 2-independent sets in , that is the 

complements in  of the minimal 2-vertex covers. Thus  precisely the Stanley-Reisnercomplex 

of . 

It is easy see that . Therefore , and so  is 2-C-

M graph if and only if the simplicial complex  is cohen-Macaulay. 

 

Now, we can show the following proposition. 

 

Proposition 12. The following statements hold 

a) For any  the complete graph  is cohen-Macaulay. 

b) The complete bipartite graph  is cohen-Macaulay if and only if . 

Proof. a) Since , thus  is connected 1-dimensional 

simplicial complex, then by Corollary 5.3.7 [5],  is cohen-Macaulay so  is cohen-Macaulay. 

b)If , then , then it is easy to see that  is c so ohen-Macaulay 

 is cohen-Macaulay. 

Conversely, let  is cohen-Macaulay and . Take  and  

are the partie sets of . One has  

 

 

 

Since , hence  is not pure simplicial complex, then by 5.3.12 [5]  is not 

cohen-Macaulay. Which is a contradiction, as desired. 

 

Now, we present a result about the Hilbert series of   and . 

 

Proposition 13. If  and  are the complementary simplicial complexes  and  

respectively, then  

 

c)  

 

d) . 

 

Proof. a) Since  hence  and 

 and . By Corollary 5.4.5 [5]. We have 

 

 

 

b)Let  and  are the parties sets of  . Since  

 

 

 

Then it is easy see that  and  for 

all . In the other hand by 6.6.6 [5], . Thus 

 

 

 

As desired. 
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Corollary 14. . 

 

Proof. It follows from Proposition 13 with assume . 

 

In this section we mainly present basic properties of 2-shellable graphs. 

 

Lemma 15. Let  be a graph and  be a vertex of degree  in  and let  and 

. Then . Moreover F is a facet of  if and only 

if  is a facet of . 

Proof. a) Let . Then ,  and . This implies 

that  and so . Thus  

is 2-independent in , it follows that . Conversely let , then  is 2-

independent in  and . Therefore  is 2-independent in  and so 

. Thus . Finally from part one follows that  is 

a Facet of  if and only if  is a facet of . 

 

Definition 16. Fix a field , and set . If  is a graph with vertex set 

, we define the projective dimension of  to be the 2-projective dimension -

modul , and we will write . 

 

Proposition 17. If  is a graph and  is a edge of , then 

 

 

 

 

Proof. Let  and . It is easy to see that  

 

 

Now, let 

, 

then 

 

 

And so by Auslander-Buchsbaum formula, we have 

 

 

 

. 

 

On the other hand by Proposition 10, together with the exact sequence 

 

, 

follows that,  
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Proposition 18. Let  be a graph and  is path ideal of . Then  

 

 

 

Proof. Let  be a minimal vertex cover with maximal cardinality. Then by Proposition 5,  is an 

associated prime of , so 

 

 

 

 

 

Proposition 19. Let  denote the complete graph on  vertices and let  denote the complete 

bipartite graph on  vertices.  

a)  

b) . 

 

Proof. a) The proof is by induction on . If , the result easy follows. Let  and suppose 

that for every complete graphs  of other less than  the result is true. Since  

then by Proposition  . On the other hand by the inductive hypothesis, we have 

, so by Proposition 17 

, 

this completes the proof. 

 

b) Again we use by induction on . If , then it is easy to see that 

. Let  and  suppose that for every complete bipartite graph  of 

order less than  the result is true. Since   then 

. Also, by the inductive hypothesis we have  and 

. So by Proposition 17, 

. 

As desired. 

 

 

Corollary 20. Let  denote the star graph on  vertices and  denote the double star, then 

. 

 

Proof. It follows from Proposition 19, with assume  and it is easy to see that 

 and so by Proposition 17, it follows that . 
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