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Abstract 

Companies are continuously looking for ways to improve their 

performance and stay competitive in their markets. In order to achieve the 

commercial goals, companies have to pay special attention to the 

distribution network. Warehousing and distribution of commodities to 

serve customers’ demand are important tasks in supply chain network. The 

effective and successful management of the distribution network results in 

meeting the customers' needs directly or indirectly from plants. In this 

paper, a Mixed Integer Programming (MIP) formulation is proposed for 

Commodity Warehousing and Distribution Problem. The model 

determined the location of the commodities to be accumulated and decided 

how customer should be served while minimizing overall costs. In this 

network under certain condition, the customers can receive their needs 

directly from plants or warehousing, and each node can rule retailers 

and/or wholesalers. Also, a solution algorithm based on Benders 

decomposition was described to solve the problem. The algorithm 

performance was promising and computational experimentation revealed 

that, for randomly generated problems, the use of such integer programs 

helped greatly in obtaining good quality solutions. 
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Introduction 

Trends such as globalisation, diversity of products and growing customer awareness make the markets 

highly competitive, thereby forcing business enterprises to adopt different strategies (Panicker et al, 

2014). Ambrosino and Grazia (Ambrosino and Grazia,2005) mentioned that “all companies that aim to be 

competitive on the market have to pay attention to their organization related to the entire supply chain”. A 

Supply Chain may be considered an integrated process in which a group of several organizations, such as 

suppliers, producers, warehouses/distributors, customers and reverse centers, work together to acquire 

raw materials with a view to converting them into end products which they distribute to customers (Fig. 

1). As of the beginning of 1990s the concept of Supply Chain began to emerge as one of the most popular 

field of research and study until today (Shahroudi and Soltani, 2013). A large amount of optimization 

models and algorithms have been developed to make different decisions along the supply chain (Cintron, 

2010). 

As per the functional classification, there are four major decision areas namely procurement, 

manufacturing, distribution and logistics (Panicker et al, 2014). Distribution network design optimization 

is one highly researched area in supply chain optimization. The parties considered at this area are: the 

plants, the warehouse/distribution centers (DC’s) and the customers (retailers and wholesalers). 

Distribution networks are considered as the main profitability key because they directly affect both the 

cost of supply chains and satisfaction of the customers. This area can be so wide and is interpreted in 

different ways by different scholars. It may include models that predict the number of warehouses and 

plants needed their locations, the production rates and inventory levels needed in these plants and 

warehouses, optimal routings when distributing demand, and other distribution decisions (Cintron, 2010).  

     Model formulations and solution algorithms which address this issue vary widely in terms of 

fundamental assumptions, mathematical complexity and computational performance. Some researchers 

have carried out their research on the base of number of warehouses required in any region. Some 

researchers are related to the products level and warehouse stock, while other try to optimize the sending 

programs. Yet some researches study the specialized applications. In most of the researches, determining 

the factories and warehouses required in a region is considered while designing the distribution network 

(Asghari Zadeh and Razani, 2013). 

The problems of locating facilities and allocating customers cover the core topics of distribution system 

design. Model formulations and solution algorithms which address the issues vary widely in terms of 

fundamental assumptions, mathematical complexity and computational performance. Klose and Drexl 

(Klose and Drexl, 2005) emphasized that designing the distribution system are a strategic issue for almost 

every company. They reviewed some of the contributions to the current state-of-the-art. Tuzkaya and 

Onut (Tuzkaya and Onut, 2009) addressed the warehousing and transportation network design problem 

that involved determining the best strategy for distributing the sub-products from the suppliers to the 

warehouse and from the warehouse to the manufacturers. In this study, a multi-supplier, single warehouse 

and multi-manufacturer system was considered as an integrated warehousing and transportation network. 

Baker and Canessa (Baker and Canessa, 2009) presented a literature review on the overall methodology 

of warehouse design along with a discussion on the tools and techniques used for specific areas of 

analysis. 

There are two key decisions when designing a distribution network: 1) Will products be delivered to the 

customer location or picked up from a pre-ordained site? 2) Will products flow through an intermediary? 

Based on the choices for the two decisions, there are various types of distribution network designs that 

may be used to move products from manufacturing plants to customer. Most companies have several 

manufacturing plants producing different products. These plants supply the costumers in the different 

regions according to the region’s demand. However, when wholesalers or retailers have large demands 
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they may be able to receive their products directly from these plants. For example, a policy of some 

companies is that if a wholesaler/retailer can fill a container from products of one plant, they can receive 

directly from that plant. Distributing directly from the plant is cheaper since no storage costs at the DC’s 

are incurred. Distributor centers (DC’s) buy products from the plants at a discounted price and store them 

in a warehouse to supply the customers. Distributors are mostly used to supply customers with low 

demand, for example, a family’s mini-market. The main advantage of supply customers via DCs is that it 

can provide a faster response. The major disadvantage is the increased inventory and facility costs (Selim 

and Ozkarahan, 2008). 

 
Fig. 1. A generic supply chain network 

     Fig. 1. depicts a generic supply chain network that includes both forward and reverse activities. In 

addition to different types of facilities, the possible flow of material is shown in the figure. In contrast to 

classical location problems, flows between facilities of the same layer are prevalent in many supply 

chains. These flows are usually necessary for material balancing or inventory consolidation (Melo et al, 

2009). In general, planning models can be broadly categorized to three temporal classifications based on 

the addressed time horizons, namely strategic (long-term), tactical (mid-term) and operational (short-

term). A discussion of their features and characteristics from a practical perspective was provided in 

(Shobrys and White, 2000). 

The focus of this work is on the short-term operational planning (see Fig. 2). Operational planning is the 

day-by-day and month-by-month planning for what an organization is doing.  It translates a high level 

strategic plan into a more detailed plan of who will do what and when. The corresponding model must 

satisfy all the operational constraints, such as mass balances, distribution constraints, customer’s demand 

and storage requirements. Each DCs node is able to play both roles of storing and distributing the goods. 

So, they are restricted to their capacity as a service point and to their demand as a customer. Each node is 

able to support its customer as well as any demand coming from other nodes subject to the level of its 

storage. Its shortage can be covered by other nodes with an extra cost up to the link line limitation. In this 

model, it is tried to increase the relationship between costumer and producer. The model is used to 

determine the optimal inventory policies and production flow that satisfy demands while minimizing the 

total operational cost. Therefore, a customer can receive commodities directly from its known DC or 

indirectly from others DCs. In spite of a good progress in modeling issue, solving the new model for large 

size network are difficult. Therefore, a solution approach based on Benders decomposition is proposed 

that provides both lower and upper bounds. The technique is combining valid inequality in master 

problem to accelerate the Benders procedure and generate feasible solutions in sub-problems.  
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Fig. 2: The district of operational decisions 

  The paper is organized as follows. In the next section, the problem definition and formulation are 

presented in general. In the third section, the solution algorithm is detailed based on Benders 

decomposition. In Section 4, the experimental result is reported. Conclusions are discussed in the last 

section. 

 Model Formulation 

     This section presents a model includes the option of having multiple DC’s in different locations and 

considers capacity for DC’s to select the best way of configuring the existing customers so that profit is 

minimize cost. However, the distribution network design resulting from this model includes the location 

and capacity of warehouses. This model considers an optimal design as that which minimizes the 

distribution costs. The distribution costs include: transportation costs, inventory holding costs and storage 

costs. This is a major decision that companies have to make when they start or as they grow into new or 

larger markets. In this study, customers are retailers and wholesalers. The model formulation described 

here is based on above mentioned problem and a few assumptions are taken into account. The main 

assumptions of the optimization model are as follows: 

A1: Each node is able to store commodities as a storage point and serves its customer as a DC 

A2: A node is connected to other nodes with a direct link and can support others 

A3: A node can demand for a commodity if its customer requests 

A4: The capacity of nodes and links are known and limited 

A5: The system can serve for more than one commodity 

     Here, the problem statement and model formulation are progressively explained.  A mesh network is 

presented by the undirected graph , where V is a set of n nodes and E  is the set of arcs 

corresponding to  1 2n n   links, respectively. The following notation is used for the sets, parameters 

and variables: 

 

Name Description 

Set and Indices 

V  The set of nodes  1,2,..., , ,n i j V  

P  The set of commodities  1,2,..., ,m k P  

E  The set of arcs 

Parameters 

,G V E 
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jS  The storage capacity at node j V  

ije
 

1 if there is a link connecting nodes i  and j  

ijS  The passing capacity at link 
ije  

k

jb  The demand for commodity k P  in node j V  

k

jc  The cost of storing commodity k P  in node j V  

k

ijc
 

The cost of transferring commodity k P  from node i V  to node j V  via link 
ije  

Variables 
k

ijx

 

1 if commodity k P is moved from node i V to node j V  

k

jy

 

1 if commodity k P is stored in node j V  

 

      Using this model, decision was made on how a node must store goods and serve its customer based on 

available commodities, at stock or obtainable from other nodes subject to operational restrictions and 

capacity limitations. The overall aim was to minimize total storage and transportation cost while 

satisfying total demand. The following integer linear programming formulation was considered for 

Commodity Warehousing and Distribution Problem. 

 
,

min k k k k

j j ij ij

k P j V k P j V i V i j

F c y c x
     

    (1) 

s.t.  

k k k k

j j i ji j

k P k P i V
i j

b y b x S j V
  



      (2a) 

k k

j ij ij

k P

b x S i j V


     (3a) 

,

1 , 0k k k

ij j j

i V i j

x y j V k P if b
 

       (4) 

,k k

ij ix y i j V k P      (5) 

 , 0,1 ,k k

ij jx y i j V k P      (6) 

                       

 

where 
k k k

j j jc c b  and 
k k k

ij ij jc c b . Constraints (2 ),(3 )a a  are forcing storage capacity in nodes and 

arcs, respectively. Constraint (4)  states that each node either stores a commodity or receives it from 

another node if the node has demand. Constraint (5)  implies that a commodity may be only obtained 

from a node if it is stored there. Constraint (6)  imposes integrality restrictions on the variables.  

     If ,j V k P   ; 0k

jb 
, 

then problem F  has  2 2n m nm  binary variables and 

 2 2 2n m n m   constraints, where n  is the number of nodes, n V  , and m  the number of 

commodities, m P . 

     There are many applications of this problem in different industries. For example, see (Gollowitzer and 

Ljubic, 2011) for connected facility location Rent-or-buy problem, (Vlachos and Iakovou, 2005), 

(Farahani and Grunow, 2010) for food distribution and for video placement and routing problem (VPRP) 
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(Ouveysi et al, 2002). The VPRP, as a special case of the model, belongs to NP-hard problems. Therefore, 

problem F , in general, is an NP-hard problem, so an optimum solution for F  is not practical using 

standard software, especially by increasing the problem size. So, a solution algorithm for this problem is 

introduced here which is based on Benders decomposition that greatly helps in obtaining good quality 

solutions. 

 Solution Methods Based on Benders Decomposition 

     

  In this section, a solution algorithm for CWDP is presented based on Benders decomposition. Then, a 

modified version of algorithm is introduced to overcome the difficulties due to the problem size. In 1962, 

Benders (Benders, 1962) proposed a partitioning algorithm for solving specially-structured large-scale 

linear and mixed integer programs. As applied to mixed-integer programming, Benders' original work 

made two primary contributions: (1) development of a "pure integer" problem that is equivalent to the 

original mixed-integer problem, and (2) a relaxation algorithm for solving problem that works iteratively 

on an LP problem and a "pure integer" problem. 

  A good review of the solution methods based on Benders decomposition was given by (Costa, 2005) in 

which it was shown that the number of researchers using this technique has been increasing. The main 

idea was to decompose a large-scale MIP problem to a master problem (small IP) and some sub-problems 

(large LP) in order to derive an equivalent master problem by generating Benders feasibility and 

optimality cuts as prompted by the sub-problems. Here, the method is rewritten as illustrated in (Canto, 

2008). 

     Consider the MIP problem: min{ | , , 0 }T Tc x f y Ax By b Dy h x     . Vectors x and y are the 

continuous and integer variables, respectively. If y  is fixed at a feasible integer configuration y , the 

resulting model is: min{ | , 0}T

x
c x Ax b By x   and the complete minimization problem can, 

therefore, be written as:  
0

min min |T T

y Y x
f y c x Ax b By

 

   
 

 where { | }Y y Dy h  . The dual of 

the inner LP problem is  max { | , 0}
T Tb By A c


     , where   is variable of dual problem. In 

any iterations of the Benders’ decomposition algorithm, two different problems are solved. A restricted 

master problem which in the form of:  

   min{ | 1, , , 0, 1, , }
T TT

l l
y Y

z z f y b By l L b By l L 


      
 

and a sub-problem in the form of:  max { | , 0}
TT Tf y b By A c


      where l is the solution 

to the sub-problem on the lth iteration. 

   Now, problem F   is considered with slack variables u and w.  

   
, ,

min k k k k

j j ij ij j ij

k P j V k P j V i V i j j V i V i j

F c y c x M u w
        

          

s.t.  
k k k k

j j i ji j j

k P k P i V
i j

b y b x S u j V
  



       (2b) 

k k

j ij ij ij

k P

b x S w i j V


      (3b) 

,

1 , | 1k k k

ij j j

i V i j

x y j V k P d
 

        
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,k k

ij ix y i j V k P       

 , 0,1 , , 0 ,k k

ij j j ijx y u w i j V k P        

 

 Where M is a big positive number. The first master problem, BF , can be obtained by removing capacity 

constraints (2 )b and (3 )b . 

 

 
,

min k k k k

j j ij ij

k P j V k P j V i V i j

BF c y c x
     

     

s. t.  

,

1 , | 1k k k

ij j j

i V i j

x y j V k P d
 

        

,k k

ij ix y i j V k P       

 , 0,1 ,k k

ij jx y i j V k P    
 

 

 

Let 
*k

ijx  and 
*k

jy  be the optimal solution for BF . If this solution is feasible for problem F , then the 

optimal solution of the original problem is obtained, that is equivalent to the zero optimal objective value 

of the sub-problems 1P  and 2P  (or, 1DP  and 2DP ); otherwise, the following sub-problems, 1 2,P P  or 

their duals 1 2,DP DP  are solved: 

 

  1 min j

j V

P u


  

* *. . k k k k

j j j i ji j

k P k P i V
i j

s t u b y b x S j V
  



       

            
0ju j V    

   
,

2 min ij

j V i V i j

P w
  

   

*. . k k

ij j ij ij

k P

s t w b x S i j V


      

         0ijw i j V     

* *1 max k k k k

j j j i ji j

j V k P k P i V
i j

DP b y b x S
   



 
  
 
 
 

    

. . 1js t j V     

            0j j V     

*

,

2 max k k

ij j ij ij

j V i V i j k P

DP b x S
   

 
  
 

    

. . 1ijs t i j V      

        0ij i j V      

 

     A non-zero optimal objective value to these sub-problems is corresponding to the infeasibility in 

problem F. So, the feasibility cuts (7, 8) have to be added to BF .  

 

* 0k k k k

j j j i ji j

j V k P k P i V
i j

b y b x S
   



 
   
 
 
 

    (7) 

     and  

*

,

0k k

ij j ij ij

j V i V i j k P

b x S
   

 
   
 

    (8) 
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The special structure of dual of sub-problems, 1DP  and 2DP  shows that  * max 0, ( )j jsign S  , 

 * max 0, ( )ij ijsign S  are the optimum solution where *k k k k

j j j i ji j

k P k P i V
i j

S b y b x S

  


     and

*k k

ij j ij ij

k P

S b x S


  .   

     In the case of having multi optimal solutions for sub-problems in (Magnanti and Wong, 1981) and 

(Papadakos, 2008) proposed to generate Pareto optimal cuts. Also the cut density is another concern that a 

remedy such as the covering cut bundle generation method proposed in (Saharidis et al, 2010). In our case 

the optimality cut is not applicable and only feasibility is concern because any feasible solution will be 

optimum. Moreover the number of required iterations and the way we calculate optimum solutions 

suggest that the straightforward approach based on original Benders Decomposition is efficient. Our 

experiments with different randomly generated problems are also shown that the difference is not 

significant. Also adding valid inequalities as is recommended، by researchers (Saharidis et al, 2011), 

(Cordeau et al, 2000 and 2006) and (Andreas and Smith, 2009) is not helpful in our case. 

     The new problem, consisting of original constraints and feasibility cuts, is set out in LBF  where 

 *
l

j  and  *
l

ij   are optimal solutions of dual problems 1 2,DP DP  in the lst iteration, respectively. 

,

min k k k k

L j j ij ij

k P j V k P j V i V i j

BF c y c x
     

     

s. t.  

,

1 , | 1k k k

ij j j

i V i j

x y j V k P d
 

        

,k k

ij ix y i j V k P       

 * 0 1,2, ,
l

k k k k

j j j i ji j

j V k P k P i V
i j

b y b x S l L
   



 
     
 
 
 

    

 

 *

,

0 1,2, ,
l

k k

ij j ij ij

j V i V i j k P

b x S l L
   

 
     

 
    

 

 , 0,1 , ,k k

ij jx y i j V k P       

 

Starting from a given 0   and max iteration, now the optimization algorithm is: 

 

Starting from a given 0   and max iteration, now the optimization algorithm is: 

 

1. Let 
BF

Z 0 0 and l 1; 

2. Perform the following steps until 
1l l

l

BF BF

BF

Z Z
gap

Z



   or  *

l

j and  *
l

ij   are zero or

l Max iteration ; where lBF
Z  is the best solution for the BF  problem in l  iterations. 

a. Solve BF  problem and obtain optimal solution
*k

ijx , 
*k

jy  . 
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b. Calculate  *
l

j  ,  *
l

ij  , If  *
l

j and  *
l

ij   are zero, so the current solution is 

feasible and optimal: otherwise, 

c. Add new constraints  7  and/or  8  to BF  problem. 

d. Increment l  by 1 and then go to (a). 

3. Output solution
*k

ijx , 
*k

jy  as the best solution; 

     It is worth mentioning that any solution for master problem LBF  which is feasible to the original 

problem F  would be an optimal solution.    

A Modified Algorithm 

 

     The experimental result in Table 1 shows that, using Benders decomposition, a lower bound with 

higher accuracy can be obtained. Unfortunately, the algorithm efficiency decreases with increasing the 

problem size. The following modifications were made to overcome this shortcoming.  The modifications 

included solving LP-relaxation of master problem BF  and then following some corrections, the method 

has been considered by McDaniel and Devine (McDaniel and Devine, 1977) as well as Goetschalckx and 

Dogan (Goetschalckx and Dogan, 1999).  

The lower bound obtained by this way was surely less than the lower bound obtained by the original 

algorithm, but solving linear programs instead of integer programs at any iteration was expected to help in 

speeding up the algorithm. The only difficulty of this modification was that the optimal solution of the 

LP-relaxation was in general fractional, but this was not always the case. A heuristic method was 

employed for obtaining feasible solutions. However, this situation could be fixed through rounding up (to 

1) every fractional variable with a value greater or equal to 0.5, and rounding down (to 0) the rest of them. 

Then, the obtained solution could be modified to a feasible one. 

     Let ˆ k

jy and ˆ k

ijx   be rounded values corresponding to the optimum solution of relaxed problem. The 

rounding process has no affect on the feasibility of constraints  5 . Now, Constraints in  4 are verified; 

for , 0k

jj V k P that b    if this constraint does not satisfy after being rounded, two cases may 

occur; either
,

ˆ ˆ 1k k

ij j

i V i j

x y
 

   or
,

ˆ ˆ 0k k

ij j

i V i j

x y
 

  . In any case, set ˆ 1k

jy   and ˆ 0k

ijx  ,

,k P j V   . The new solution satisfy both Constraints  4),(5  and the algorithm can be continued 

from step (2-b). 

An Application and Numerical Results  
     As a practical case, the above approach was applied on VPRP where a node is a server which is able to 

store a copy of program (says k) in which k  is the capacity requirement for storing program k P at 

any node and the bandwidth requirement for transmission of program k P in the network using k

from its link capacity. Also, there is a demand for each program at each node, see (Ouveysi et al, 2002). 

So, a server plays two roles as a warehouse and DC. As a result, Constraint (2a) and (3a) are   
k

k j j

k P

y S j V


    

       

k

k ij ij

k P

x S i j V


           

Archive of SID

www.SID.ir

http://www.sid.ir


 

10 

 

     In this case, computer programs were considered as different commodities; therefore, one copy of a 

program was enough for supporting many requests. Consequently, the second term in Constraint (2a) was 

not necessary and removed. In this section, the present computational experiment is described with the 

proposed algorithm using randomly generated test problems for VPRP.  

     To compare the performance of different approaches, a batch of 16  random problems were generated 

with the number of nodes  n  ranging from 50  to80  and the number of commodities  m  ranging 

from 20  to 50 , as described in (Bektas et al, 2007). Parameters , ,k k

k ij jc c  were randomly generated 

from a continuous uniform distribution between 50 and100. k  was modeled as k k kT   where kT  is 

the total transmission time for program k . In the experiments, 10kT   fixed for all k P . The 
ijS  

values were chosen from the continuous uniform distribution between  maxk P k  and k

k P




 . The 

capacity of each node ( )jS  was set to be 40%  of the size of all the programs. The proposed algorithm 

was implemented using AIMMS software (AIMMS, 3.9) and all the test problems were solved on a PC 

Intel processor 2.4 GHz and 3.00Gb of RAM using CPLEX 12.0  (CPLEX, 12.0) as the optimization 

package.  

    In order to compare the performance of different approaches, a time limit of 500 sec was considered. 

The best objective values of above-mentioned approaches within the given time limit were denoted by C , 

L and B , respectively.  

The computational results are shown in Table 1. Any row in Table 1 consists of: 
n : Number of nodes; 
m : Number of commodities;  

Bn : Number of iterations required by the Benders algorithm; 

Ln : Number of iterations required by the Lagrangean algorithm; 

BT : Solution time using Benders algorithm (sec); 

LT : Solution time using Lagrangean algorithm (sec); 

CT : Solution time required to solve instances using CPLEX (sec); 

( ) 100C B
B

C

v v
g

v


  : Relative gap (error%); 

( ) 100L C
L

C

v v
g

v


  : Relative gap (error%) 

     The results in Table 1 indicate that the proposed algorithm is able to produce good quality solutions. 

The algorithm delivered a high-quality near-optimal solution in all cases (about 1% error). The quality of 

the other solution was not as good as that of the proposed algorithm, even with an increase in time and no. 

of iterations. Only, in two cases, the solution of Lagrangean approach was better than the proposed 

algorithm. The solution times of the proposed algorithm for some instances (special for large instances) 

are better than the solution time of Lagrangean approach. 

 
Table 1: Comparison of different approaches in terms of solution quality 

# n  m  Bn  Ln
 BT  LT

 CT
 Bv  Cv  Bg  Lg  

1 50 20 6 13 66 62.23 57.31 53885.00 53891 0.0111 0.82 

2 50 30 6 16 161 184.56 126.07 80954.11 80956 0.0023 0.98 
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3 50 40 6 10 245 212.32 188.53 107627.50 107634 0.0060 0.53 

4 50 50 6 9 327 328.65 302.20 134653.00 134660 0.0051 -0.10 

5 60 20 6 12 134 84.25 121.63 64036.42 64041 0.0071 0.91 

6 60 30 6 10 326 323.65 264.29 96175.41 96179 0.0037 0.72 

7 60 40 6 7 475 456.56 322.63 128597.70 128602 0.0033 -0.56 

8 60 50 6 7 500 485.24 476.92 160391.60 160400 0.0052 -2.61 

9 70 20 2 7 420 436.25 126.87 74518.00 74518 0.00 0.12 

10 70 30 6 7 430 473.98 371.25 111701.70 111707 0.0047 -2.74 

11 70 40 6 7 500 500.00 442.32 148852.40 148854 0.0011 -3.63 

12 70 50 6 6 500 500.00 490.41 186155.80 186159 0.0017 -3.89 

13 80 20 6 6 390 387.45 154.27 84846.56 84848 0.0016 -0.30 

14 80 30 6 7 485 500.00 365.85 127058.90 127062 0.0024 -5.08 

15 80 40 6 8 500 500.00 479.29 169489.10 169491 0.0011 -4.80 

16 80 50 6 7 500 500.00 500 211905.00 211914 0.0042 -4.07 

 

          In facing with large scale problems, the size of master problem increases dramatically and 

obtaining IP solution gets more difficult. The modified algorithm was proposed to overcome this 

shortcoming. The aim of this approach is to improve the solution time. The performances of the modified 

algorithm and Benders algorithm are reported in Table 2. As can be seen, the solution time for the 

modified algorithm is better than Benders algorithm.  

     Therefore, 20 random problems were generated with the number of nodes ( )n  ranging from 50 to 90 

and the number of commodities ( )m  ranging from 10 to 40. The best objective value of the two 

approaches was denoted by B and M , respectively. Any row in Table 2 consists of: 

n : Number of nodes; 
m : Number of commodities; 

Bn
: Number of iterations required by Benders algorithm; 

Mn
: Number of iterations required by modified algorithm; 

BT
: Solution time using Benders algorithm (sec); 

MT
: Solution time using modified algorithm (sec.); 

CT : Solution time required to solve instances using CPLEX (sec); 

100B M

B

T T
imp

T


  : Relative time improvement; 

gCplex: final gap of the best solution found by CPLEX using time limit (%); 

100B M
M

B

g
 




   : Relative gap (error%); 

( ) 100C B
B

C

v v
g

v


  : Relative gap (error%); 

100C M
CM

C

g
v

 
   : Relative gap (error%). 

 
Table 2: Comparison of Benders and modified algorithms in terms of solution time and quality 

# n  m  Bn  Mn  BT  MT  CT
 

imp  
Bv  Mv

 Cv
 

gCplex Mg  Bg
 CMg

 
1 50 10 6 6 16 6 11.3 62.5 26897.67 26888 26901 0 0.0359 0.0123 0.0483 

2 50 20 6 6 60 12 57.31 80 53900.34 53896 53907 0 0.0080 0.0123 0.0204 
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3 50 30 6 6 166 17 126.07 89.759 80687 80669 80694 0 0.0223 0.0086 0.0309 

4 50 40 6 6 224 28 188.53 87.5 107811.7 107778 107820 0 0.0312 0.0077 0.0389 

5 60 10 6 6 46 7 12.51 84.782 32127 32110 32133 0 0.0529 0.0186 0.0715 

6 60 20 6 6 138 17 121.63 87.681 64163 64149 64170 0 0.0218 0.0109 0.0327 

7 60 30 6 6 254 25 264.29 90.157 96313 96294 96314 0 0.0197 0.0010 0.0207 

8 60 40 6 6 506 30 322.63 94.071 128128 128109 128133 0 0.0148 0.0039 0.0187 

9 70 10 6 6 107 12 31.74 88.785 37247 37238 37252 0 0.0241 0.0134 0.0375 

10 70 20 6 6 331 33 126.87 90.030 74574 74551 74580 0 0.0308 0.0080 0.0388 

11 70 30 6 6 389 54 318.25 86.118 111610 111591 111611 0 0.0170 0.0008 0.0179 

12 70 40 6 6 605 64 442.32 89.421 148938 148914 148944 0 0.0161 0.0040 0.0201 

13 80 10 6 6 128 22 39.30 82.812 42348 42334 42349 0 0.0330 0.0023 0.0354 

14 80 20 6 6 322 38 154.27 88.198 84732 84721 84732 0 0.0129 0.00 0.0129 

15 80 30 6 6 494 62 365.85 87.449 127058.5 127034 127062 0 0.0192 0.0027 0.0220 

16 80 40 6 6 518 92 419.29 89.978 169407.8 169377 169410 0 0.0181 0.0013 0.0194 

17 90 10 6 6 312 26 48.29 91.666 47627 47610 47630 0 0.0356 0.0062 0.0419 

18 90 20 3 6 280 54 294.39 80.714 94967 94955 94971 0 0.0126 0.0042 0.0168 

19 90 30 3 6 518 143 500 84.422 142478.7 142422 142489 0 0.0398 0.0072 0.0470 

20 90 40 3 6 500 257 500 82.866 190407 190354 190420 0.02% 0.0278 0.0068 0.0346 

 

     The results reported in Table 2 show that applying the modified algorithm could lead to a reduction in 

solution time up to 80% while keeping solution quality at the same level. Also, the large-scale problems 

were solved efficiently.  

 Conclusion 

 

   In this paper, the warehousing and distribution of plant’s commodities was proposed in which demands 

of customers were served while minimizing the total cost of storage and transportation commodities such 

that facility and link capacity were satisfied. The MIP model as a Commodity Warehousing and 

Distribution Problem is NP-hard. So, a modified Benders decomposition algorithm was presented to get 

an optimal solution. It is clear that obtaining the optimal solution for the considered model gets more 

complicated when the problem size increases. The computational result showed that the proposed 

algorithm is able to obtain near-optimal solutions in a reasonable time even for large-scale problems. The 

decomposition algorithm takes the problem structure into account and looks for a feasible solution in any 

iteration. Therefore, only feasibility cuts are added to the master problem. This feature prevents the 

master problem from quickly getting large and leads to a reduction in the solution time.  
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