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Abstract: In this paper, we will present a new algorithm for solving Ito stochastic differential equations (SDEs) 

in continuous piecewise polynomial space. In this approach, we will employ piecewise collocation method for 

drift and diffusion terms of the given equation. Convergence order of the method is investigated and some 

numerical examples are considered to demonstrate the efficiency and robustness of the method. 
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1.  INTRODUCTION 

   Theory of stochastic differential equations as a relatively 

new field of science, is going to play a prominent role in 

the mathematical world. Indeed, an SDE is a differential 

equation in which one or more of the terms, and hence the 

solution itself, is a stochastic process. Ito in the late 50’s 

has found wide range of applications including Biology, 

Chemistry, Mechanics, Economics and so on. 

   Based on the fact that most of SDE models don’t posses 

an explicit exact analytic solution, it is necessary to drive 

numerical methods to generate an approximate solution to 

the problem under consideration. 

  One of the key methods that employ to understand SDEs 

is Monte-Carlo simulation. This method involves 

generating many sample paths or sequences of random 

variable that are distributed in some known way. We 

consider models based upon the standard Brownian 

motion. Based on this strategy, we will construct an 

efficient numerical method to obtain a numerical solution 

of the given SDE, in direct analogy with the deterministic 

methods such as Euler method. 

   We organize this paper as follows: In section 2, we will 

define the Brownian motion (Wiener process) and will 

express two main stochastic integrals (Ito and 

Stratonovich  integrals) and then  Euler-Maruyama method 

for finding the numerical solution of SDEs is introduced. 

In the sequel, existence and uniqueness of the solution and 

convergence properties of the method is discussed. In 

section 3, we will refer to piecewise polynomial 

collocation method for integrating ordinary differential 

equations (ODEs). After construction a new numerical 

method in section 4, we will present some computational 

experiments in next section. 

2.  STOCHASTIC DIFFERENTIAL EQUATIONS 

    In this section the fundamental concepts of Euler-

Maruyama method and its convergence for SDEs is 

discussed.  

A.  Brownian  Motion 

A scalar Brownian motion, or standard Wiener process, 

over [0 , ]T  is a random variable ( )w t  that depends 

continuously upon [0 , ]t T  and satisfies: 

1) ( 0 ) 0w  , with probability 1. 

2) For 0 s t T   the random variable given by 

increment ( ) ( )w t w s is normally distributed 

with mean zero and variance t s  i.e. 

( ) ( ) N ( 0 , 1)w t w s t s  , 

 where N ( 0 , 1)  denotes a normally distributed random 

variable with zero mean and unit variance. 

3) For 0 s t u v T     , ( ) ( )w t w s  and 

(v) (u )w w  are independent. 

            Fig.1  shows a Wiener process for n=1000. 

 

        
                       Figure 1:  Brownian path Sample. 

B.  Stochastic Integrals 

A stochastic integral is the integral of some function 

( )h t  over some interval [0 , ]T , but with respect to a 

Brownian motion ( )w t as 

                                     
0

( )
T

t
h t d w .                  (1) 

We approximate (1) as ordinary integral by the 

Riemann sum:   

           

1

*

1
0

0

( ) ( t ) (w (t ) ( ) )

N
T

t j j j

j

h t d w h w t







  . 

In the deterministic setting,  answer of (1) isn’t 
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different if we choose 
*

t
j
 from Trapezoidal or midpoint 

rules, but in the stochastic form, we will two rules with 

two different answers: 

1) Ito  Integral: With 
*

t
j j

t , we have: 

1

1
0

0

( ) ( t ) (w ( t ) ( ) )

N
T

t j j j

j

h t d w h w t







 
, 

2) Stratonovich Integral: When we choose 

1*
t

t
2

j j

j

t



 ,  

we have 
1

1

1
0

0

t
( ) ( )(w (t ) ( ))

2

N
T

j j

t j j

j

t
h t d w h w t










 

. 

     The choice of which interpretation (Ito or 

Stratonovich) should be used,  depends on the type of 

analysis required for an SDE and in this paper the Ito 

form will be used. In order to avoid any confusion in 

notation, henceforth  the symbol ◦ will be used to denote 

the Stratonovich form. For another properties of 

stochastic integrals see [4]. 

C.  The Euler-Maruyama Method 

The general form of the SDE which will be considered 

in this paper, is given by 

             ( , ) ( , )
t t t t

d x f t x d t g t x d w   ,                      (2) 

                   
0 0

x ( )t x , 
m

x  .                

Here f is an m-vector-valued function, g  is an 

m p matrix-valued function and ( )w t is a p-dimensional 

process having independent scalar Wiener process 

components ( 0t  )  and the solution x ( )t  is an m-vector 

process. In SDE (2) f  is called drift coefficient and g is 

called diffusion coefficient (or noise term). 

A solution to (2) is a process (w )
t

X  that is an adapted 

function of W, so that 

0 0

0
x ( ) ( ) (s , x ) g (s , x )

t t

s s s
t t

t x t f d s d w   
.                (3) 

In the integral formulation, ( )w t  is a Wiener process 

and can be interpreted in such a way that the derivative of 

W is the Gaussian white noise process (in fact ( )w t  is  

not differentiable). 

To apply a numerical scheme to the SDE (3), we must 

firstly  discretize  time interval [0 , ]T  by using a fixed 

step-size h
T

N
 . This gives us a set of equally spaced 

points as: 

        
0 1

0 ... . . .
n N

t t t t T       , 

for approximation  our numerical solution. 

The Euler-Maruyama (E-M) method is so far the most 

studied numerical method for solving SDEs which takes 

the form (in one dimension): 

1
(x ) (x )

n n n n n n
x x h f w g


    , 0,1, ..., 1n N                 

(4) 

Where 
1n n n

h t t


   and 
1

( ) ( )
n n n

w w t w t


   . From 

definition of a wiener process it follows that these 

increments are independent with normal distribution 

N (0 , )
n

h . 

      In examining the first three terms of the stochastic 

Taylor expansion, we see that this form is the basis of 

Euler-Maruyama scheme.  When g (x ) 0 ,  this reduces 

to the ordinary deterministic Euler scheme. We can adding 

more and more stochastic terms from the stochastic Taylor 

expansion and obtain more accurate methods. 

  Fig.  2 shows the exact solution (with red stars) and 

Euler-Maruyama method (with blue mesh). 

  

       
         Figure 2:  Euler-Maruyama approximation. 

  We now express existence and uniqueness theorem and 

in the sequel, refer to the convergence definitions. 

  Theorem 1: Let 0T  and ( ., .) : [ 0 , ]
n n

f T   , 

g ( ., .) : [ 0 , ]
n n m

T


  be measurable functions 

satisfying: 

   (t, x ) g (t, x ) (1 x )f C   ,     x
n

 , [0 , ]t T  

    for some constant C  and  

         (t, x ) (t, y) g (t, x ) (t, y) x yf f g D     , 

x , y
n

  ,                      

 for some constant D .   Let 
0

x Z  be a random variable 

which is independent of the  -algebra 
( )

F
m


 generated  

by ( .)
s

w , 0s    such that 
2

( )E Z   . 

Then the SDE (2) has a unique t-continuous solution 
t

x  

with the property that 
t

x  is adapted to the filtration F
z

t
 

generated by Z  and ( .)
s

w ; s t   and 

                          
2

0

[ d t]
T

t
E x   . 

    Proof: see [4,6,7]. 

   Some numerical time-discretization methods for the 

numerical solution of SDEs, briefly have already been 
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discussed in this paper. In order to evaluate the efficacy of 

such methods, two ways of measuring accuracy are used: 

strong convergence and weak convergence. 

Definition 1: We say that a discrete time approximation 
h

Y  converges strongly with order 0p   at time T  if 

there exists a positive constant C , which does not 

depends on the maximum step size h  and 
0

0  , such 

that: 

                                     ( )
h p

T T
E X Y C h  , 

for each 0

0
(0 , )

T t
h

N



  , N  is the number of 

subintervals  in 
0

[ t , ]I T , 
T

X and 
T

Y  are the exact and 

the approximate solution at T , respectively. 

    It can be seen from literature, the Euler-Maruyama 

scheme has strong order of convergence p=0.5. 

    In some cases, it is not necessary to find an accurate 

path wise approximation of an Ito process. Instead, only 

some of the moments may be of interest or, more 

generally, ( ( ))E f X  for some function ( )f X . This is a 

much weaker condition.  

Definition 2: A discrete time approximation 
T

Y  with 

maximum step size h is said to be converges weakly with 

order 0p   to X  at time T  as 0h  , if for each 

2 ( 1 )

( , )
p d

p
f C R R



  there exists positive constant C, 

which does not depends on h  and a finite number 

0
0  , such that 

                         ( ( )) ( ( ))
h p

T T
E f X E f Y C h  , 

for each 
0

( 0 , )h  ([6]). 

3.  PIECEWISE COLLOCATION METHOD  

    Consider the initial-value problem: 

      x ( ) ( , x (t))t f t  ,            t : [0 , ],I T   

     
0

x (0 ) x ,                                                     (5) 

and assume that the Lipschitz-continuous function  

:f I       is such that (4)  possesses a unique 

solution 
1

( )y C I  for all 
0

x   .  Let 

              
0 1

: { t : 0 ... }
n Nh

I t t t T      , 

 be a given (not necessarily uniform) mesh on  I  and set 

1
: ( t , t ]

n n n



  , 

1
: [ t , t ]

n n n



  , with 

1n n n
h t t


   

(n 0 , 1, ... N 1)  , { h : 0 n N 1}
n

h M a x    .  

      Suppose:  

           
0

0

x ( t) ( , x )
t

s
x f s d s  

 ,        t I  .            (6) 

 We use the Volterra  integral equation (6)  as  the basis 

for obtaining collocation approximation to the solution x  

of (5) . Denote by 
( 1)

1 1
( ) : { : (0 1)}

n
m h m

S I n N


  


 
     , 

 the space of piecewise polynomials of degree m 1 0   

which may be discontinuous at the interior points 

1 2 1
t , , . . . , t

N
t


 of the mesh 

h
I . More precisely,  let Y

h
 be 

given by  

1
Y { t t c h : 0 c ... 1(0 1)}

n ih
n N          ,         (7)                   

 for a given mesh
h

I . So,  the collocation parameters { c }
i

 

completely determine Y
h

.   The collocation solution 

( 1 )

1
( )

h m h
S I




   for (6) is given locally by  

,

1

(t h ) ( ) V

m

n j n jh

j

L  



    ,         (0 ,1]                  (8) 

 with 
,

: ( t c h )
n j n jh

V   and is defined by the ollocation    

equation: 

0
0

( ) (s , (s ) )
t

h h
t X f d s    ,  

h
t X . 

    Setting  
1

1

0 0
0

: (s , (s )) ( t , ( t ) ) d s

n
t

n h l l l h l l

l

F f d s h f s h s h 





     , 

and 
,

:
n i n i n

t t t c h   ,  

(8) may be written in the form  

, 0
0

( t , ( t ) ) d s
i

c

n i n n n n h n n
V X F h f s h s h      

       
0 ,

0
1

( t , (s ) V ) d s
i

m
c

n n n n j n j

j

X F h f s h L



    
.        (9) 

       For more details see [1]. 

   Now we explain the above spline collocation method for 

SDEs: 

    Let us consider the given SDE as  

( ) (x ( )) (x ( )) ( )d x t f t d t g t d w t  ,   [0 , ]t T .  (10) 

Consider a set of equally spaced points  

                
0 1

0 ...
N

t t t T     . 

  We  rewrite (10) as 

 
0

0 0

x ( ) ( ) (x (s )) (x (s )) (s )
T T

t x t f d s g d w    .          (11) 

       Inserting   the collocation parameters { c }
i

, 

i 0 ,1, ... m  into  (11) yields 

0
0 0

x ( ) ( ) (x (s )) (x (s )) (s )
n j n j

t c h t c h

n j
t c h x t f d s g d w

 

     . 

       Now,  dividing the interval [ 0 , ]
n j

t c h  to 

1 1 2
[ 0 , ] [ , ] . . . [ , ]

n n j
t t t t t c h  and using collocation 

scheme (9), gives us a numerical approximation for the 

first integral term.  For the second integral, we use  the  Ito 

integral and make a Wiener process with  mN  knots  as  

1

0

1

1

0

1

0

(x (s )) (s ) (x (s )) (s )(x (s )) d w (s )

( (x (t ))(w (t ) w (t ))) (x (t ))(w (t c h ) w (t )) .

j n j

j n

T t t

t t

i i i n n j n

N
c h

j

N

i

g d w g d wg

g g














 

    

 



 (12) 
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For determining the order of convergence, as pointed by 

many authors in literature, we consider proposed 

collocation method for 100 Brownian path with different 

step-sizes in the end point. We prove that its strong 

convergence rate is of the same order as the Euler-

Maruyama method. For more details, see [8]. 

4.  NUMERICAL RESULTS 

    To see how well the Spline collocation scheme (9,12) 

works, we compare its performance with the standard E-M 

scheme(4) by solving two sample stochastic differential 

equations. The numerical result of these methods will be 

shown in Table 1 and 2. 

 

 Example 1:  The first example that we are going to test is 

the following linear SDEs:              

( ) 0 .0 1 d t 0 .0 2 d w (t)d x t x x   ,  
0

1x  , 

where the exact solution is given by 

                     

2

0

( 0 .0 2 )
( 0 .0 1 0 .0 2 ( ))

2x (t)
t w t

x e
 

 . 

    The numerical solution using the Spline collocation 

method for different m (collocation points) which is 

discussed in this paper and E-M method with the 

maximum error are given in Table 1. 

    In order to clearly demonstrate the convergence rate of 

the Spline collocation method, we also plotted the average 

sample errors at the terminal time T for the Spline 

collocation scheme with different step-sizes in Fig 3. 

                                             TABLE 1 
MAX. ERROR OF THE EULER-MARUYAMA METHOD AND THE SPLINE 

COLLOCATION METHOD FOR EXAMPLE 1. 

N      m=4      m=5 Euler-Maruyama 

    2^5  2.52E-5 1.83E-5 2.86E-5 

    2^6  2.94E-5 1.51E-5 5.94E-5 

    2^7  2.14E-5 1.80E-5 1.61E-5 

    2^8  1.84E-5 1.08E-5 2.76E-5 

    2^9  5.68E-6 9.23E-6 2.36E-5 

 

 
Figure 3: The convergence rate of the Spline collocation method.  

  

Example 2:   Consider nonlinear SDE 

              
2 2

1
( ) d t 1 d w (t)

2

d x t q x q x    ,     

with  q=0.02 and
0

0x  , where the exact solution is  

                     
1

0
x ( t) s in (q w (t) s in ( ) )x


  . 

  The obtained numerical results by using the Spline 

collocation method for different collocation parameters 

and E-M method  for nonlinear equation 2 have reported 

in Table 2. 

    From the figure 3 and tables, it is easy to see that both 

the E-M and Spline collocation schemes have the half 

order convergence, but the Spline collocation scheme 

obtains better approximate solutions in comparison to     

E-M method. 

                                         Table 2 
 MAX. ERROR OF THE EULER-MARUYAMA METHOD AND THE 

SPLINE COLLOCATION METHOD FOR THE NONLINEAR EXAMPLE 2. 

N      m=4      m=5 Euler-Maruyama 

    2^5 1.916E-7 2.749E-7 3.676E-7 

    2^6 2.554E-7 1.024E-7 3.197E-7 

    2^7 7.512E-8 9.584E-8 1.448E-7 

    2^8 1.439E-7 1.279E-7 3.766E-7 

    2^9 2.627E-7 8.843E-8 5.296E-8 

5.  CONCLUSION 

    In this paper, we proposed and discussed a Spline 

collocation method for numerical solution of the stochastic 

differential equations driven by the one-dimensional 

Brownian motion. Although the strong convergence rate 

of our method is of the same order as that of the Euler-

Maruyama method, this scheme makes it possible to 

obtain better approximation than standard approach.  
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