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Abstract 
Location-routing problem (LRP) is established as a new research area in the context of location 
analysis that concerns simultaneously both the problems of location of facilities and routing of 
vehicles among the established facilities and the existing demand points. In this paper, the 
location-routing problem with fuzzy demands (LRPFD) is considered which may arise in many 
real life situations in logistics management and a fuzzy chance constrained program is designed to 
model it based on fuzzy possibility theory. A tabu search (TS) heuristic is proposed to solve the 
problem. The efficiency of the solution procedure is demonstrated using a standard benchmark set 
of test problems. 
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1. Introduction 
The efficient and effective movement of goods from raw material sites to processing facilities, 

component fabrication plants, finished goods assembly plants, distribution centers, retailers and 
customers is critical in today’s competitive environment. Approximately 10% of the gross domestic 
product is devoted to supply-related activities [1]. The above proportion can easily exceed this value 
within individual industries. In many real life situations, shipments are made in less-than-truckload 
(LTL) quantities from a facility to customers along a multiple-stop route. In the case of full truckload 
quantities, the cost of delivery is independent of the other deliveries made, whereas in the case of LTL 
quantities, the cost of delivery depends on the other customers on the route and the sequence in which 
customers are visited. Thus ignoring this dependence between location and routing decisions will 
result in sub-optimal decisions. 

We define location-routing, following Nagy and Salhi [2], as “location planning with tour 
planning aspects taken into account”. This definition stems from a hierarchical viewpoint, whereby the 
aim is to solve a facility location problem (the “master problem”), but in order to achieve this, we need 
to solve a vehicle routing problem (the “sub-problem”) as well. This also implies an integrated 
solution approach, i.e. an approach that considers both location and routing aspects of a problem but 
does not address their interrelation is not classified as belonging to the LRP. Location-routing 
problems are closely related to both the classical location-allocation problem and the vehicle routing 
problems. In fact, both of the latter problems can be thought of as special cases of the LRP. If we 
require all customers to be directly linked to the existing depots, the LRP reduces to a standard 
location problem. On the other hand, if we fix the depot locations, the LRP becomes a VRP. From a 
practical viewpoint, location-routing is a part of distribution management, while theoretically it can 
usually be modeled as a combinatorial optimization problem. We note that this is an NP-hard problem, 
since it encompasses two NP-hard problems (facility location and vehicle routing). 
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Fuzzy logic has been used to solve many applied problems so far. The need to use fuzzy logic in 
problems arises whenever there are some vague or uncertain parameters. In most of the cases, there is 
not sufficient data for fitting a probability distribution to the customers’ demands. On the other hand, 
based on the expert’s judgment, one can easily estimate these demands. Therefore, while using 
probability theory is difficult and costly, fuzzy logic is used to deal with uncertainty in these problems. 
Credibility theory has been used in many problems with fuzzy parameters so far, in parallel with some 
metaheuristics. Fazel Zarandi et al. [3] addressed multi-depot capacitated LRP (MDCLRP) in which 
travel time between two nodes is a fuzzy variable and proposed a simulation-embedded simulated 
annealing (SA) procedure in order to solve the problem. 

Erabo and Mingyong [4] considered the vehicle routing problem with fuzzy demands and 
proposed a fuzzy chance constrained program model based on fuzzy credibility theory. They used 
stochastic simulation and an improved differential evolution algorithm to solve the problem. 
Considering the literature of location-routing problem, our paper makes the following contributions to 
the literature. As far as the authors know, this is the first work in the literature of the LRP which 
considers fuzzy demands and uses credibility theory to model and solve problem. Moreover, a hybrid 
simulated annealing based heuristic has been proposed in which stochastic simulation is used to 
estimate the credibility of a solution.  

In this paper, the LRP has two levels (depots and customers) and can be defined as follows: Let 
G=(V,E) be an undirected network where V is a set of nodes comprised of a subset I of m potential 
depot sites and a subset J=V \I of n customers. E is a set of edges connecting each pair of nodes in V.
Associated with each edge (i,j)∈E is a traveling cost cij. Each depot site i∈ I has an opening cost Oi.
Each customer j∈J has a demand dj of a single commodity which is assumed to be a fuzzy variable. 
Determination of the real values of the customers’ demands prior to their realizations is often too 
difficult or even impossible because of their uncertain nature. In this work we assume that there is not 
sufficient data for fitting a probability distribution to the customers’ demands. It is assumed that these 
demands are estimated based on the expert’s judgment. Therefore, fuzzy logic is used to deal with 
uncertainty in this paper. A set K of identical vehicles with capacity Q is available. Each vehicle, when 
used by a depot i, incurs a depot dependent fixed cost Fi and performs a single route. Each route must 
start and terminate at the same depot. The objective is to determine which depots should be opened 
and which routes should be constructed to minimize the total cost. We also assume that: (a) a vehicle 
will be assigned for only one route on which there may be more than one customer, and (b) a customer 
will be visited by one and only one vehicle. The goal of our problem is: (i) to determine the subset of 
facilities (depots) to open, (ii) the allocation of customers to depots, and (iii) the routes from depots to 
serve customers regarding the capacities of vehicles. Fig. 1 shows a solution to a typical LRP instance 
with 20 customers and 6 candidate sites for depot locations. As it is depicted, in this solution three 
depots out of six candidate depots have been opened (depots 22, 23, and 25). The deliveries are made 
though five established routes (two routes are originated from depot 22, two routes from depot 23, and 
one route from depot 25).  

Figure 1- A feasible solution for an LRP instance with 20 customers and 6 candidate depot sites. 
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This paper is organized as follows: In Section 2, we give some basic concepts on fuzzy theory. In 
Section 3, we introduce location-routing problem with fuzzy demand and present a CCP model, where 
we will measure fuzzy events with possibility. Then we propose a tabu search (TS) based hesuritic to 
solve this model in Section 4. In Section 5, we will conduct a set of experiments to reveal the 
effectiveness of the proposed hybrid heuristic. In the final section, we summarize the paper and 
provide some lines for further research. 
2. Fuzzy Sets and Possibility Theory 

A classic set is normally defined as a collection of elements. Each single element can either 
belong or not belong to this set. Such a set can be described in different ways: one can either list the 
elements that belong to the set; describe the set analytically by a sequence of equalities and 
inequalities; or define the member elements by using the characteristic function, in which 1 indicates 
strict membership and 0 strict nonmembership. However, in many cases, the membership (or 
nonmembership) is not clear. For example, “young man”, “large number”, “about 100 tons”, 
“approximately 250 liters”. They are not tractable by the classical set theory. In order to deal with 
them, Zadeh [5] firstly introduced the concept of fuzzy set and defined the membership function as the 
degree to which an element belongs to a fuzzy set. We call a fuzzy number (or called fuzzy quantity) a 
fuzzy subset a% of R with membership function aµ % :R→[0,1]. 

Possibility theory was initially proposed by Zadeh [6], and extended by many researchers such as 
Dubois and Prade [7]. Let a% and b% be two fuzzy numbers with membership functions aµ % and bµ % ,
respectively. Based on the concepts and techniques of possibility theory founded by Zadeh [6], the 
possibility of a b≤ %% is defined as follows: 

{ } { }sup min( ( ), ( )) | , ,a bPoss a b x x x y R x yµ µ≤ = ∈ ≤%%
%% . (1) 

 
Especially, when a% is crisp, i.e., a, we have: 

{ } { }sup ( ) | ,bPoss a b x x R a xµ≤ = ∈ ≤%
% . (2) 

Now let us assume that b% is a triangular fuzzy number, i.e., b% = (b1, b2, b3). We can now rewrite 
the eq. (2) as: 

{ }
2

3
2 3

3 2

3

1

0

if a b
b aPoss a b if b a b
b b

if b a

 <


−≤ = < < −
 <

% . (3) 

 
3. Fuzzy Chance Constrained Programming Model 

This section presents an integer programming formulations for the location-routing problem with 
fuzzy demands (LRPFD). In the basic version of this model which was proposed by Prins et al. [8], the 
assumption of single-sourcing holds, in other words, it is assumed that the customers acquire their 
needed demand from a single supplier. The following notations ate used to represent the mathematical 
programming formulation. 

Sets and parameters: 
Set of customers indexed by jJ
Set of candidate depot sites indexed by iI
Set of vehicles indexed by kK
Set of all points; V=I ∪ JV
Set of arcs (i,j) connecting every pair of nodes i, j ∈VE
Fuzzy demand of customer jjd%
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Fixed cost of opening a depot at candidate site iOi
Fixed cost of employing a vehicle at candidate site iFi
Cost of traveling associated with arc (i,j)∈Ecij
Capacity of vehicles; here it is assumed that all vehicles are homogeneousQ

Decision variables: 
if we open a depot at candidate site i
if not 

1
0





Zi =

if demands at customer j are served by the depot at candidate site i
if not 

1
0





Yij =

if vehicle k goes directly from node i to node j
if not 

1
0





Xijk=

The corresponding chance constrained problem (CCP), that is, the mathematical formulation of 
LRPFD based on possibility theory, is as follows:  

 
min  i i i ijk ij ijk

i I i I j J k K i V j V k K
O Z F X c X

∈ ∈ ∈ ∈ ∈ ∈ ∈

+ +∑ ∑∑∑ ∑∑∑ (4) 

Subject To:   

 1ijk
i V k K

X
∈ ∈

=∑∑ j J∀ ∈ (5) 

j ijk
i V j J

Poss d X Q ε
∈ ∈

 
≥ ≤ 

 
∑∑ % k K∀ ∈ (6) 

1ijk
i S j S

X S
∈ ∈

≤ −∑∑ ;S J k K∀ ⊆ ∀ ∈ (7) 

0ijk jik
j V j V

X X
∈ ∈

− =∑ ∑ ;j V k K∀ ∈ ∀ ∈ (8) 

1ijk
i I j J

X
∈ ∈

≤∑∑ k K∀ ∈ (9) 

1imk jhk ij
m V h V

X X Y
∈ ∈

+ ≤ +∑ ∑ ; ;i I j J k K∀ ∈ ∀ ∈ ∀ ∈ (10) 

{ } { } { }0,1 ,  0,1 ,  0,1i ij ijkZ Y X∈ ∈ ∈  i I∀ ∈ (11) 
The three terms in the objective function (4) represent the sum of the fixed depot location costs 

and routing costs including the fixed costs of employing vehicles and the travel costs, respectively. 
Constraints (5) ensure that each customer belongs to one and exactly one route, and that each customer 
has only one predecessor in the route. Chance constraint (6) assures that all customers are visited given 
a vehicle’s capacity within a certain confidence level. In other words, this constraint implies that the 
possibility of the event that customers are not visited given a vehicle’s capacity be less than a 
predetemined small value (ε). Constraints (7) are sub-tour elimination constraints. Constraints (8) and 
(9) guarantee the continuity of each route, and that each route terminates at the depot where the route 
starts. Constraints (10) ensure that a customer must be allocated to a depot if there is a route 
connecting them. Finally, (11) are integrality constraints.  

Using eq. (3) we can rewrite the constraint (6) as follows: 
 

,3

,3 ,2

j ijk
i I j J

j ijk j ijk
i I j J i I j J

d X Q

d X d X
ε∈ ∈

∈ ∈ ∈ ∈

−
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−
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Which is equivalent to: 
 

,2 ,3(1 )j ijk j ijk
i I j J i I j J

d X d X Qε ε
∈ ∈ ∈ ∈

   
+ − ≤   

   
∑∑ ∑∑  (12) 

 
The deterministic equivalent of chance constrained programming model for LRPFD can be 

writen as follows: 
min  i i i ijk ij ijk

i I i I j J k K i V j V k K
O Z F X c X

∈ ∈ ∈ ∈ ∈ ∈ ∈

+ +∑ ∑∑∑ ∑∑∑ (4) 

Subject To:   
(5),(7)-(11)   

,2 ,3(1 )j ijk j ijk
i I j J i I j J

d X d X Qε ε
∈ ∈ ∈ ∈

   
+ − ≤   

   
∑∑ ∑∑  k K∀ ∈ (12) 

 
4.Tabu Search based Heuristic 

Tabu search, originally developed in a paper by Glover [9], is a local search has effectively 
tackled a variety of hard real world optimization problems. This procedure starts with an initial 
solution and uses a tabu list to control moves in neighborhood structure so that trapping in local 
optima and re-visiting the same solution not occurred. From the current solution, all the non-tabu 
moves are explored and the best one is selected. This move, that might be lead to better or worse 
solution than current solution, is recorded in tabu list. The future move is among that moves are not in 
tabu list, unless it fulfills aspiration level. TS is terminated when some of stopping criteria is reached.  

4.1. Solution Representation 
A solution is represented by a string of numbers consisting of a permutation of n customers 

denoted by the set {1, 2, .., n}, m potential depots denoted by the set {n+1, n+2, ..., n+m}, and Ndummy 
zeros which are used to separate routes, in addition to the vehicle capacity constraints. The ith number 
in {1, 2, ..., n} denotes the ith customer to be serviced. The first number in a solution is always in 
{n+1, n+2, ..., n+m} indicating the first depot under consideration. The parameter Ndummy is calculated 

as ( / )jj
d C 

 ∑ , where dj is the mean demand of customer j, Q is the capacity of vehicle, and .  
denotes the smallest integer which is larger than or equal to the enclosed number. 

The solution representation is further explained as following. Each depot services customers 
between the depot and the next depot in the solution representation. The first route of this depot starts 
by servicing the first customer after the depot. Other customers for this depot are added to the current 
route one at a time. If the credibility of having enough capacity for serving the next customer falls 
below the dispatcher preference index, the current route is terminated. If the next number in the 
solution representation is a dummy zero, the current route will also be terminated. A new route will be 
started to service remaining customers assigned to this depot. It can be verified that this solution 
representation always gives a LRP solution without violating the capacity constraint of the vehicle. 
Fig. 2 depicts a possible coding for the solution to the LRP instance shown in Fig. 1. 

 

Figure 2- A possible representation for the solution shown in Fig. 1. 

4.2. Initial Solution Generation 
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The initial solution is constructed in a quite random fashion. First, a number is randomly selected 
from the set of depots {n+1, n+2, ..., n+m} and is placed in first cell of the solution string. Then, the   
remaining (m-1) depots as well as n customers and Ndummy dummy zeros are randomly allocated to the 
empty cells of the string. This simple initial solution generation procedure is not only a quick way to 
produce a feasible solution but it also produces diverse solutions which can help the algorithm does 
not get trapped in local optima in different runs. 

4.3. Neighborhood structure 
We define and use three neighborhood structures to explore the solution space in the proposed TS 

heuristic; “insertion”, “swap”, and “2-opt” moves. These three neighborhood structures can be 
described as follows: 

The insertion move is carried out by randomly selecting the ith number of X and inserting it into 
the position immediately before another randomly selected jth number of X.

The swap move is performed by randomly selecting the ith and the jth numbers of X, and then 
exchanging the positions of these two numbers. 

The 2-opt move, commonly used in solving VRP related problems, is modified and applied to 
improve existing routes. This is implemented by randomly selecting two customers that are assigned 
to the same depot, and then reverse the substring in the solution representation between them.  

4.4. Parameters Used in the TS Heuristic 
Parameters for the proposed tabu-based algorithm are the length of tabu tenure and the maximum 

number of iterations performed by TS. In the proposed tabu search heuristic, tabu tenure is equal to a 
randomly selected positive integer from the interval [5,10] and the maximum number of iterations 
performed by TS is limited to 50.  

 
5. Numerical Study 
5.1. Examining the efficiency of the TS based heuristic using LRP benchmark 

To verify the performance of the proposed TS heuristic, it is applied to the LRP benchmark 
provided by Barreto [10]. This benchmark includes the 15 test problems of which 10 instances do not 
impose capacity constraint on depots. Lower bounds for these LRP instances are available at 
(http://prodhonc.free.fr/Instances/instances_us.htm). The capacitated LRP considered in Barreto [10] 
can be solved by the proposed heuristic with a little adaptation; therefore, one can apply the adapted 
heuristic to the benchmark to assess its performance. The proposed algorithms are coded in MATLAB 
R2009b on a PC with an Intel Core 2 Dou CPU (2.0 GHz) and 2 GB memory.   

 
Table 1-Solutions obtained by the proposed heuristic for Barreto’s LRP instances 

No. Instance’s name in 
Barreto (2004) 

Lower 
bound 

TS 
Total 
Cost 

Gap 
(%) 

CPU time 
(sec) 

1 Gaskell67-22x5 585.1 585.1 0.0 3.8 
2 Gaskell67-29x5 512.1 561.8 9.7 4.4 
3 Gaskell67-32x5 562.2 620.7 10.4 5.5 
4 Gaskell67-32x5b 504.3 504.5 0.0 5.8 
5 Gaskell67-36x5 460.4 506.2 10.0 6.3 
6 Christofides69-50x5 565.6 620.1 9.6 11.1 
7 Christofides69-75x10 798.7 902.0 12.9 113.8 
8 Christofides69-100x10 818.1 895.3 9.4 188.9 
9 Perl83-12x2 204.0 204.0 0.0 1.7 

10 Min92-27x5 3062.0 3062.0 0.0 4.0 
Average 6.2 34.5 

The results of applying TS heuristic to the 10 instances from Barreto [1] are presented in Table 1. 
From this table, it can be seen that the solutions found by the TS heuristic are optimal for four 
instances, and that, for the whole set of test problems, the average gap is less than 6.2%. This shows 
that the proposed TS heuristic performs well in terms of solution quality which is an indication of 
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efficiency of the proposed solution procedure. Also the time required to solve these problems is quite 
small (in a matter of seconds), which is quite short time for solving a strategic problem like LRP. 

5.2. Applying the TS based heuristic to LRPFD  
Now we will give some examples to show models that we have just discussed and how the 

proposed hybrid heuristic works. We take all the parameters of the problems same as 
(http://prodhonc.free.fr/Instances/instances_us.htm) and solved the problem instance “Gaskell67-
32×5b” with 32 customers and 5 candidate depots. We added fuzzy demands to the same dataset and 
generated our test problem. We genrate the fuzzy demand using 3 levels of fuzziness; tight, normal, 
and loose. We set the left, mid, and right entries of the tight fuzzy demand triplets as 0.9, 1, and 1.1 of 
their nominal values, respectively. We set the left, mid, and right entries of the normal fuzzy demand 
triplets as 0.75, 1, and 1.25 of their nominal values, respectively. Finally, we set the left, mid, and right 
entries of the tight fuzzy demand triplets as 0.5, 1, and 1.5 of their nominal values, respectively. The 
results obtained from this experiment are shown in Table 2. 

 
Table 2. Solutions obtained by the proposed heuristic for 32*5 instances using three levels of fuzziness 

ε Tight 
(0.9, 1, 1.1)

Normal 
(0.75, 1, 1.25)

Loose 
(0.5, 1, 1.5)

0.0 519.5 543.5 575.5
0.1 508.6 543.5 575.2
0.2 508.6 529.2 566.7
0.3 508.6 520.5 562.2
0.4 508.6 519.6 546.8
0.5 508.6 519.6 543.5
0.6 508.6 519.6 529.2
0.7 508.6 508.6 520.5
0.8 508.6 508.6 519.5
0.9 504.5 508.6 508.6
1.0 504.5 504.5 504.5

Figure 3 graphically depicts the relationship between the objective function and the value of the 
parameter ε for three levels of fuzziness. 

 

Figure 3- Graphical illustration of relation ship between bbjective function value and parameter ε for three levels of 
fuzziness 

Observe from Table 2 and Figure 3 that, as the triangular numbers get sharper (in case of tight 
fuzziness level), the optimal solution gets closer to the solution of the deterministic location-routing 
problem. This is a quite expected result since an extremely sharp fuzzy number (fuzzy number with 
basis of width zero) can be interpreted as a crisp number. On the other hand, as the value of ε get 
larger, the value of objective function decrease. It can be mentioned that the larger values of parameter 
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ε express the decision maker’s desire to use vehicle capacity the best he/she can. As a result, these 
values correspond to routes with less cost. On the other hand, low values of parameter ε represent less 
utilization of vehicle capacity and hence for these vlaues the possibility of violation of vehicle 
capacity. In other words, low values of parameter ε shows that the decision maker is a risk averse 
person, while high values of ε indicate that the decision maker is a cost sensitive person.  

 

6. Conclusion 
This paper considered one of the most important problems in logistics and supply chain 

management namely the location-routing problem in which the demand of the customers is assumed to 
be of fuzzy nature (LRPFD). Firstly a chance constrained programming formulation based on 
possibility measure was proposed to model the problem and the deterministic equivalent of the 
proposed chance constrained programming problrm is extracted. Then a tabu search (TS) based 
heuristic was presented to solve the problem with the objective of minimizing the total cost provided 
that the possibility of violation of vehicle capacities be less than a predetemined small value (ε). 
Finally, the effectiveness of the proposed solution procedure was illustrated by some numerical 
examples of different sizes. As an interesting line for future research the interested researchers can use 
other fuzzy measures (such as credibility measure, etc.) in modeling the problem. Also, othe heuristic 
and meta-heuristic approches can be used to solve this problem. 
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