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Here, we investigate the growth of matter density perturbations as well as the generalized sec-
ond law (GSL) of thermodynamics in the framework of f(R)-gravity. We consider a spatially flat
FRW universe filled with the pressureless matter and radiation which is enclosed by the dynami-
cal apparent horizon with the Hawking temperature. For some viable f(R) models containing the
Starobinsky, Hu-Sawicki, Exponential, Tsujikawa, and AB models, we first explore numerically the
evolution of some cosmological parameters like the Hubble parameter, the Ricci scalar, the decel-
eration parameter, the density parameters and the effective equation of state parameter. Then, we
examine the validity of GSL and obtain the growth factor of structure formation. We find that for
the aforementioned models, the GSL is satisfied from the early times to the present epoch. But
in the future, the GSL for the all models but the Hu-Sawicki and AB models, is violated in some
ranges of redshift. Our numerical results also show that for the all models the growth factor for
larger structures like the ΛCDM model fit the data very well.

I. F (R)-GRAVITY FRAMEWORK

One of the representative approaches to explain the
current acceleration of the universe is to consider a theory
of modified gravity (MG), such as f(R) gravity, in which
the Einstein-Hilbert action in GR is generalized from the
Ricci scalar R to an arbitrary function of the Ricci scalar
[1]. A f(R) model with negative and positive powers of
Ricci curvature scalar R naturally admits the unification
of the inflation at early times and the cosmic acceleration
at late times [2]. It can also serve as dark matter (DM),
[3]. The modified Einstein-Hilbert action in the Jordan
frame is given by [1]

SJ =

∫ √
−g d4x

[

f(R)

16πG
+ Lmatter

]

, (1)

where G, g, R and Lmatter are the gravitational constant,
the determinant of the metric gµν , the Ricci scalar and
the lagrangian density of the matter inside the universe,
respectively.

For a spatially flat FRW metric, taking T
µ(m)
ν =

diag(−ρ, p, p, p) in the prefect fluid form, the Friedmann
equations in f(R)-gravity are given by [4]

3H2 = 8πG(ρ + ρD), (2)

2Ḣ = −8πG(ρ + ρD + p + pD), (3)

where

8πGρD =
1

2

(

RF − f
)

− 3HḞ

+3H2
(

1 − F
)

, (4)

8πGpD =
−1

2

(

RF − f
)

+ F̈ + 2HḞ

−(1− F )
(

2Ḣ + 3H2
)

, (5)

with

R = 6(Ḣ + 2H2). (6)

Here H = ȧ/a is the Hubble parameter. Also ρD and
pD are the curvature contribution to the energy den-
sity and pressure which can play the role of DE. Also
ρ = ρBM + ρDM + ρrad and p = prad = ρrad/3 are the
energy density and pressure of the matter inside the uni-
verse. The energy conservation laws are established for
the pressureless matter, ρm = ρBM +ρDM, radiation, ρrad

and DE, ρD. On the whole of the paper, the dot and the
subscript R denote the derivatives with respect to the
cosmic time t and the Ricci scalar R, respectively.

II. GROWTH RATE OF MATTER DENSITY

PERTURBATIONS

The evolution of the matter density contrast δm =
δρm/ρm provides an important tool to distinguish f(R)-
gravity and generally MG models from DE inside GR
and, in particular, from the ΛCDM model.

The linear evolutions of matter density contrast, in a
flat FRW background is govern by [5,6]

δ̈m + 2Hδ̇m − 4πGeffρmδm = 0, (7)

where

Geff =
G

F

[

4

3
−

1

3

M2a2

k2 + M2a2

]

, (8)

and M2 = F
3FR

. Equation (8) obviously shows that the
screened mass function, i.e. Geff/G, is the time and scale
dependent parameter. In the present work, we obtain the
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evolution of linear perturbations relevant to the matter
spectrum for the scales; k = 0.1, 0.01, 0.001 h Mpc−1,
where h corresponds to the Hubble parameter today.
For smaller scales, k > 0.2 h Mpc−1, the effect of non-
linearity becomes important, which is out of the scope of
this paper.

III. GENERALIZED SECOND LAW OF

THERMODYNAMICS

According to the GSL, entropy of the matter inside
the horizon beside the entropy associated with the sur-
face of horizon should not decrease during the time [7].
Karami et al. [8] showed that within the framework of
f(R)-gravity, the GSL for a spatially flat FRW universe
enclosed by the dynamical apparent horizon and contain-
ing the pressureless baryonic and dark matters as well as
the radiation is given by

TAṠtot =
1

4GH4

[

2Ḣ2F − ḢHḞ + 2(Ḣ + H2)F̈
]

, (9)

where Stot = Sm + SA is the total entropy due to dif-
ferent contributions of the matter and the horizon. Here
SA = AF

4G
is the geometric entropy of the horizon in f(R)-

gravity, where A = 4πr̃2
A and r̃A is the dynamical appar-

ent horizon which is same as the Hubble horizon for a flat
FRW universe, i.e. r̃A = H−1. Also TA = 1

2πr̃A

(

1− ˙̃rA

2Hr̃A

)

is the Hawking temperature on the apparent horizon.
Note that Eq. (9) shows that the validity of the GSL,
i.e. TAṠtot ≥ 0, depends on the f(R)-gravity model. In
subsequent sections we examine the validity of the GSL
for some viable f(R) models.

IV. COSMOLOGICAL EVOLUTION

To obtain the evolutionary behavior for f(R) models
we need to solve the following equation [9]

(1 + z)2y′′

H + J1(1 + z)y′

H + J2yH + J3 = 0, (10)

where

J1 = −3 −
(

1 − F̄

6H̄2F̄R

)

, (11)

J2 =
2 − F̄

3H̄2F̄R
, (12)

J3 = −3(1 + z)3 −
1

6H̄2F̄R
×

[

(1 − F̄ )
(

(1 + z)3 + 2χ(1 + z)4
)

+
1

3Ωm0

(R̄ − f̄)

]

, (13)

yH :=
ρD

ρm0

=
H̄2

Ωm0

− (1 + z)3 − χ(1 + z)4. (14)

We are intersected in investigating the growth of struc-
ture formation and examining the GSL in f(R)-gravity,
hence in what follows we consider some viable f(R) mod-
els including the Starobinsky [5], Hu-Sawicki [10], Ex-
ponential [9], Tsujikawa [11] and AB [12] models, Eqs.
(15)-(19), respectively.

f(R) = R + λRs

[

(

1 +
R2

R2
s

)−n

− 1

]

, (15)

f(R) = R −
c1Rs

(

R
Rs

)n

c2

(

R
Rs

)n
+ 1

, (16)

f(R) = R − βRs

(

1 − e−
R

Rs

)

, (17)

f(R) = R − λRs tanh

(

R

Rs

)

, (18)

f(R) =
R

2
+

ε

2
log

(

cosh(R
ε
− b)

cosh(b)

)

. (19)

In the next section, we only present the results and figures
obtained for AB model. The overall results obtained for
the rest of models are illustrated in section VI.

V. NUMERICAL RESULTS

With the help of numerical results obtained for yH(z)
in Eq. (10), we can obtain the evolutionary behaviors

of H , ωeff = −1 − 2Ḣ
3H2 , q, Ωm, ΩD and GSL for our se-

lected f(R) models. The results for the AB f(R) model
are displayed in Figs. 1-5. Figures show that: (i) the
Hubble parameter decreases during history of the uni-
verse. (ii) The effective EoS parameter, ωeff , starts from
an early matter-dominated regime (i.e. ωeff = 0) and in
the late time, z → −1, it behaves like the ΛCDM model.
(iii) The deceleration parameter q varies from an early
matter-dominant epoch (q = 0.5) to the de Sitter era
(q = −1) in the future, as expected. It also shows a
transition from a cosmic deceleration q > 0 to the accel-
eration q < 0 in the near past. The current value of the
deceleration parameter is obtained as −0.6 which is in
good agreement with the recent observational constraint
q0 = −0.43+0.13

−0.17 (68% CL) obtained by the cosmography
[13]. (iv) The density parameters ΩD and Ωm increases
and decreases, respectively, as z decreases. (v) The GSL
is always satisfied from early times to the late cosmolog-
ical history of the universe.
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FIG. 1. The variations of the Hubble parameter H versus
redshift z. Auxiliary parameters are Ωm0

= 0.24, ΩD0
= 0.76,

Ωrad0
= 4.1 × 10−5 and b = 1.4, ε = Rs/(b + log(2 cosh b)).
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FIG. 2. The variations of the ωeff versus redshift z. Auxil-
iary parameters are as in Fig. 1.

In Figs. 6-8, we plot the evolutions of growth factor f ,
g and Geff/G, versus z for the AB f(R) model. Figures
show that: (i) The evolution of the growth factor f(z)
for this model and ΛCDM model together with the 11
observational data of the growth factor, show that for
smaller structures (larger k), the f(R) model deviates
from the observational data. But for larger structures
(smaller k), the growth factor very similar to the ΛCDM
model, fits the data very well. (ii) The linear density
contrast relative to its value in a pure matter model g =
δ/a starts from an early matter-dominated phase, i.e.
g ' 1 and decreases during history of the universe. For
a given z, g in the AB f(R) model, is greater than that
in the ΛCDM model. (iii) The screened mass function
Geff/G for a given wavenumber k is larger than one which
makes a faster growth of the structures compared to the
GR. However, for the higher redshifts, the screened mass
function approaches to unity in which the GR structure
formation is recovered. Note that the deviation of Geff/G
from unity for small scale structures (larger k) is greater
than large scale structures (smaller k).
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FIG. 3. The variations of the deceleration parameter q ver-
sus redshift z. Auxiliary parameters are as in Fig. 1.
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FIG. 4. The variations of the density parameter Ωi versus
redshift z. Auxiliary parameters are as in Fig. 1.

VI. CONCLUSIONS

Here, we investigated the evolution of both matter
density fluctuations and GSL in some viable f(R) mod-
els containing the Starobinsky, Hu-Sawicki, Exponential,
Tsujikawa and AB models. Our results show the follow-
ing.

(i) All of the selected f(R) models can give rise to a late
time accelerated expansion phase of the universe. The
deceleration parameter for the all models shows a cosmic
deceleration q > 0 to acceleration q < 0 transition. The
present value of the deceleration parameter takes place in
the observational range. Also at late times (z → −1), it
approaches a de Sitter regime (i.e. q → −1), as expected.

(ii) The effective EoS parameter ωeff for the all models
starts from the matter dominated era, ωeff ' 0, and in
the late time, z → −1, it behaves like the ΛCDM model,
ωeff → −1.

(iii) The GSL is respected from the early times to the
present epoch. But in the future, the GSL for the all
models but the Hu-Sawicki and the AB models, is vio-
lated in some ranges of redshift.

(iv) For the all models, the screened mass function
Geff/G is larger than 1 and in high z regime goes to 1.
The deviation of Geff/G from unity for larger k (smaller
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FIG. 5. The variations of the GSL versus redshift z. Aux-
iliary parameters are as in Fig. 1.
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FIG. 6. The variations of the growth factor f(z) versus
redshift z. Auxiliary parameters are as in Fig. 1.

structures) is greater than the smaller k (larger struc-
tures). The modification of GR in the framework of
f(R)-gravity, gives rise to an effective gravitational con-
stant, Geff , which is time and scale dependent parameter
in contrast to the Newtonian gravitational constant.

(v) The linear density contrast relative to its value in
a pure matter model, g(a) = δm/a, for the all models
starts from an early matter-dominated phase, g(a) = 1,
and decreases during history of the universe.

(vi) The evolutionary behavior of the growth factor
of linear matter density perturbations, f(z), shows that
for the all models the growth factor for smaller k (larger
structures) like the ΛCDM model fit the data very well.
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