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We study the intermediate inflation in a non-canonical scalar field framework with a power-like
Lagrangian. we obtain an inverse power law inflationary potential and approximate the total e-fold
number of inflation in our model. Then, we estimate the inflationary observables and show that in
contrast with the standard canonical intermediate inflation, our non-canonical model is compatible
with the observational results of Planck 2015. Subsequently, we obtain an approximation for the
energy scale at the initial time of inflation and show that it can be of order of the Planck energy
scale. Therefore, we can resolve one of the mysteries of the inflation theory.

PACS numbers: 98.80.Cq

I. INTRODUCTION

Inflationary scenario is one important part of modern
cosmology. In this scenario, it is believed that a rapid
expansion has occurred in the very early stages of our
universe. Consideration of this fast accelerated expansion
can resolve some of basic problems of the Hot Big Bang
cosmology, such as horizon problem, flatness problem and
relic particle abundances problem.
In the standard model of inflation, a canonical kinetic

term is included in Lagrangian and usually this term is
dominated by the potential term. But also there are some
models of inflation in which the kinetic term can be differ-
ent from the standard canonical one [1–5]. These models
are known as the non-canonical models of inflation.
In this paper, we focus on the intermediate inflation

in a non-canonical setting. First, we turn to obtain the
inflationary potential for our model. Then, we approxi-
mate the total e-fold number of inflation in our model.
In addition, we estimate the inflationary observables and
compare them with the observational results of Planck
2015 [6]. Subsequently, we find an approximation for the
energy scale at the start of inflation.

II. INTERMEDIATE INFLATION IN A
NON-CANONICAL FRAMEWORK

Let us consider the following action

S =

∫
d4x

√
−g L(X,ϕ), (1)

where L, ϕ and X ≡ ∂µϕ∂
µϕ/2 are the Lagrangian, the

inflaton scalar field and the kinetic term, respectively.
The energy density ρϕ and pressure pϕ of the scalar field
for the above action are given by [1–5]

ρϕ = 2X

(
∂L
∂X

)
− L, (2)

pϕ = L. (3)

In this work, we consider the flat FRWmetric. Therefore,
the kinetic term turns into X = ϕ̇2/2. Also, dynamics of
the universe is determined by the Friedmann equation

H2 =
1

3M2
P

ρϕ, (4)

together with the acceleration equation

ä

a
= − 1

6M2
P

(ρϕ + 3pϕ) , (5)

where MP = 1/
√
8πG is the reduced Planck mass, a is

the scale factor and H ≡ ȧ/a is the Hubble parameter.
The first and second slow-roll parameters are defined

as

ε = − Ḣ

H2
, (6)

η = ε− ε̇

2Hε
, (7)

respectively. In the slow-roll approximation, we have ε ≪
1 and |η| ≪ 1.

In this paper, we assume that in the action (1), the
Lagrangian has the power-like form

L(X,ϕ) = X

(
X

M4

)α−1

− V (ϕ), (8)

where α is a dimensionless parameter and M is a param-
eter with dimensions of mass [3–5]. For α = 1, the above
Lagrangian turns into the standard canonical Lagrangian
L(X,ϕ) = X − V (ϕ).

Inserting the Lagrangian (8) into Eqs. (2) and (3), we
find the energy density and pressure of the scalar field ϕ
as
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ρϕ = (2α− 1)X

(
X

M4

)α−1

+ V (ϕ), (9)

pϕ = X

(
X

M4

)α−1

− V (ϕ). (10)

We can show that by use of the slow-roll conditions
for the Lagrangian (8), the first slow-roll parameter (6)
is related to the potential V (ϕ) as

εV =

[
1

α

(
3M4

V (ϕ)

)α−1(
MPV

′(ϕ)√
2 V (ϕ)

)2α
] 1

2α−1

, (11)

Also, in the slow-roll regime, the potential energy domi-
nates the kinetic energy and thus the Friedmann equation
(4) reduces to

H2 (ϕ) =
1

3M2
P

V (ϕ). (12)

Moreover, in the slow-roll regime, the evolution equation
of the scalar field is [4]

ϕ̇ = −θ

{(
MP√
3α

)(
θV ′(ϕ)√
V (ϕ)

)(
2M4

)α−1

} 1
2α−1

, (13)

where θ = 1 when V ′(ϕ) > 0 and θ = −1 when V ′(ϕ) < 0.
In this paper, we are interested in studying the inter-

mediate inflation with the scale factor

a(t) = exp
[
A(MP t)

f
]
, (14)

where A > 0 and 0 < f < 1 [7–9].
With the help of Eqs. (4), (5), (9) and (10) for the

intermediate scale factor (14), we find the inflationary
potential as [5]

V (ϕ) = V0

(
ϕ

MP

)−s

, (15)

where

s =
4α (1− f)

2α+ f − 2
, (16)

and

V0 =
3× 2

6α(1−f)
2α+f−2α

2(2α−1)(1−f)
2α+f−2 M̄

8(α−1)(1−f)
2α+f−2

(2α+ f − 2)
4α(1−f)
2α+f−2

× (Af)
4α−2

2α+f−2 (1− f)
2(1−f)
2α+f−2M4

P , (17)

where M̄ ≡ M/MP . We see that the potential driving
the intermediate inflation in our non-canonical frame-
work, like the potential of the standard canonical case
[9], has inverse power law form.

III. ENERGY SCALE AT THE INITIAL TIME OF
INFLATION

It is convenient to express the amount of inflation with
respect to the e-fold number defined as

N ≡ ln
(ae
a

)
. (18)

The above definition leads to

dN = −Hdt = −H

ϕ̇
dϕ. (19)

Here, we are interested in obtaining the evolution of the
scalar field ϕ in terms of the e-fold number N . To this
end, in Eq. (19) we replace H and ϕ̇ from Eqs. (12) and
(13), respectively. We notice that the potential (15) has
inverse power law form, thus V ′(ϕ) < 0 and consequently
we take θ = −1 in Eq. (13). Now, we can solve the differ-
ential equation (19). To determine the initial condition,
we use the first potential slow-roll parameter (11) which
for our inflationary potential (15), reads

εV =
2

3αf
2α+f−2α

f(2α−1)
2α+f−2 M̄

4f(α−1)
2α+f−2 (1− f)

2(α+f−1)
2α+f−2

(Af)
2(α−1)
2α+f−2 (2α+ f − 2)

2αf
2α+f−2

×
(

ϕ

MP

)− 2αf
2α+f−2

. (20)

This is a decreasing function during inflation and hence
the relation εV = 1 is related to the initial time of infla-
tion [10]. Consequently, the value of the scalar field at
the start of inflation is obtained as

ϕi =
2
√
2α

2α−1
2α M̄

2(α−1)
α (Af)

1−α
αf (1− f)

α+f−1
αf

2α+ f − 2
MP . (21)

With this initial condition, the differential equation (19)
gives

ϕ =
2
√
2αµ

2(α−1)
α (1− f)

1
2α

α
1
2α (2α+ f − 2) (Af)

α−1
αf

× [f (Ni −N − 1) + 1]
2α+f−2

2αf MP , (22)

where Ni is the e-fold number corresponding to the initial
time of inflation.

In the slow-roll approximation, the power spectrum
of scalar perturbations for our non-canonical model (8)
acquires the form [3–5]

Ps =
1

72π2cs

(
6ααV (ϕ)

5α−2

M14α−8
P M̄4(α−1)V ′(ϕ)

2α

) 1
2α−1

aH=csk

. (23)

This quantity should be evaluated at the sound hori-
zon exit specified by aH = csk where k is the comoving
wavenumber and cs is the sound speed defined as [1–5]
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c2s =
∂pϕ/∂X

∂ρϕ/∂X
. (24)

For our non-canonical model (8), it reduces to

cs =
1√

2α− 1
, (25)

which is a constant quantity. Using Eqs. (15) and (22)
in Eq. (23) and after some simplifications, we get

Ps =

√
2α− 1(Af)

2/f

8π2 (1− f)
[f (Ni −N − 1) + 1]

3− 2
f . (26)

In the above equation, we see that for the value of f =
2/3, the scalar power spectrum is independent of the e-
fold number N and we expect a Harrison-Zel’dovich scale
invariant spectrum. The scalar spectral index is defied
as

ns − 1 ≡ d lnPs

d ln k
. (27)

Here, we use the equation aH = csk and we note that H
is approximately constant during slow-roll inflation, and
also cs is constant for our non-canonical model. There-
fore, we get

d ln k = −dN. (28)

Using this relation together with Eqs. (27) and (26), we
obtain the scalar spectral index as

ns = 1− 2− 3f

f (Ni −N − 1) + 1
. (29)

In addition, using Eqs. (28) and (29), we find the running
of the scalar spectral index as

dns

d ln k
=

(2− 3f) f

[f (Ni −N − 1) + 1]
2 . (30)

The power spectrum of the tensor perturbations for our
non-canonical model (8) is given by [2]

Pt =
2

3π2

(
V (ϕ)

M4
P

)
aH=k

, (31)

where it should be calculated at the horizon exit specified
by aH = k. Inserting Eqs. (15) and (22) into Eq. (31),
we obtain

Pt =
2(Af)

2/f

π2
[f (Ni −N − 1) + 1]

− 2(1−f)
f . (32)

The tensor spectral index is defined as

nt ≡
d lnPt

d ln k
. (33)

With the help of Eqs. (28), (32) and (33), we obtain the
following relation for the tensor spectral index

nt = − 2 (1− f)

f(Ni −N − 1) + 1
. (34)

Another important inflationary observable is the tensor-
to-scalar ratio defined as

r ≡ Pt

Ps
. (35)

Substituting Eqs. (26) and (32) into (35), we obtain the
tensor-to-scalar ratio as

r =
16 (1− f)√

2α− 1 [f (Ni −N − 1) + 1]
. (36)

Now, using Eqs. (25), (34) and (36), we see that the
consistency relation for our non-canonical model [3–5]

r = −8csnt (37)

is satisfied.
If we evaluate the inflationary potential (15) at ϕi given

by Eq. (21), we find the potential energy at the initial
time of inflation as

Vi ≡ V (ϕi) = 3(Af)
2/f

(1− f)
− 2(1−f)

f M4
P . (38)

Here, we take α = 20 and f = 1/4 and set A = 4.119 as
determined in [5]. In addition, we take the e-fold number
of the horizon exit as N∗ = 60. Now, if we fix Ps|N∗

=

2.207 × 10−9 from Planck 2015 TT,TE,EE+lowP data
combination [6] in Eq. (26), then we find the e-fold
number corresponding to the initial time of inflation
as Ni = 201. We define the total e-fold number as
Ntot ≡ Ni − Ne where Ne is the e-fold number corre-
sponding to the end time of inflation and vanishes ac-
cording to definition (18). Therefore, our non-canonical
inflationary model predicts the total e-fold number of in-
flation as Ntot = 201. It should be reminded that this
value is an approximation according to Linde’s idea about
the eternal inflation [11,12].

In order to show the consistency of our discussion, we
estimate the inflationary observables and compare them
with the Planck 2015 observational results. For this pur-
pose, we evaluate the inflationary observables at N∗ =
60. Therefore, using Eq. (29) we obtain ns = 0.9653
which lies in the range with 68% CL allowed by Planck
2015 TT,TE,EE+lowP data (ns = 0.9644 ± 0.0049) [6].
Also, from Eqs. (30) and (36), we get dns/d ln k = 0.0002
and r = 0.0534, respectively, which are in agreement
with Planck 2015 TT,TE,EE+lowP data at 68% CL [6].
Furthermore, from Eq. (34) we see that our model pre-
dicts the tensor spectral index as nt = −0.0417 that
can be checked by precise measurements in the future.
Therefore, we conclude that in contrast with the stan-
dard canonical inflation, our non-canonical model is con-
sistent with the Planck 2015 observational results.

At this point, we obtain an approximation for the en-
ergy scale at the start of inflation. To this end, we use Eq.
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FIG. 1. Evolution of the inflationary potential (15) versus
the dimensionless time t̄ = MP t. The dotted line specifies the
potential energy at the initial time of inflation.

(38) and find the potential energy at the initial time of
inflation as Vi = 21.30M4

P . Therefore, we find the energy

scale at the start of inflation as V
1/4
i ∼ MP ∼ 1018GeV

which is of order of the Planck energy scale. There-
fore, we can provide a reasonable explanation for one
of the mysteries of the inflation theory that the en-
ergy scale defined by the energy density of the universe
at horizon exit is a few orders of magnitude less than
the Planck energy scale and is approximately of order
MP /100 ∼ 1016 GeV according to observational results,
while we expect that inflation occurs at the energy scale
of order MP ∼ 1018GeV [13]. In fact, we resolve this
problem by implying that inflation begins from the en-
ergy scale of order MP but it converges rapidly to the
energy scale of order MP /100 at which the slow-roll be-
haviour occurs so that the horizon exit takes place at
this energy scale. In order to show this remark more
concretely, we use Eq. (15) to plot the evolution of infla-
tionary potential versus dimensionless time. This plot is
demonstrated in Fig. 1. It should be noted that we could
solve this problem in our inflationary model because the
slow-roll conditions are not perfectly satisfied during a
short period of time at the beginning of inflation. To
show this fact, we use Eq. (6) for the intermediate scale
factor (14) and plot the evolution of the first slow-roll
parameter relative to dimensionless time in Fig. 2. This
figure shows that after a short period of time, inflation
rapidly enters the slow-roll regime (ε ≪ 1) in which the
horizon crossing takes place.

IV. CONCLUSIONS

Here, we investigated the intermediate inflation char-

acterized by the scale factor a(t) = exp
[
A(MP t)

f
]
where

A > 0 and 0 < f < 1 in a non-canonical framework with

FIG. 2. Evolution of the first slow-roll parameter (6) versus
the dimensionless time t̄ = MP t.

a power-like Lagrangian. We showed that in our non-
canonical framework, the intermediate inflation is driven
by the inverse power law potential. Having the inflation-
ary potential in hand, we turned to find an approxima-
tion for the total e-fold number of inflation in our model.
Subsequently, we estimated the inflationary observables
and showed that in contrast with the standard canonical
intermediate inflation, our non-canonical model of inter-
mediate inflation can be compatible with Planck 2015
results. Finally, we obtained an approximation for the
energy scale at the initial time of inflation and showed
that it can be of order of the Planck energy scale. There-
fore, we could provide a convincing explanation for one
the mysteries of the inflation theory.
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