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In this paper we consider the motion of test particles in the black hole space-time given by P. D.
Mennheim and D. Kazanas. We derive the analytical solutions for the equation of motion of neutral
test particles. the geodesic equations can be solved in terms of Weierstrass elliptic functions and
derivatives of Kleinian sigma functions. the different types of the resulting orbits are characterized
in terms of the conserved energy and angular momentum.

I. INTRODUCTION

One of such alternative theories of gravity is Conformal
Gravity(CG)(Maldacena, 1997), a gravitational theory
which is based on a large symmetry principle known as
conformal symmetry. Intuitively, beside of local Lorentz
symmetry, it also has an scaling symmetry in which the
physics is invariant under the rescaling the metric as
gµν = eΩ(x)gµν . The motion of test particles (both mas-
sive and massless) provides the only experimentally fea-
sible way to study the gravitational fields of objects such
as black holes.For this purpose the Weierstrassian ellip-
tic functions are most useful because they lead to simple
expressions. The resulting structure of the equations of
motion is essentially the same as in Schwarzschild space-
time, where they can be solved analytically in terms of
elliptic functions as first demonstrated by Hagihara in
1931 [8]. This method was also applied to the analyti-
cal solution of the equations of motion in 4-dimensional
Schwarzschild de Sitter [7] and Kerr de Sitter space-
time [9], as well as in higher dimensional Schwarzschild,
Schwarzschild-(anti)de Sitter, Reissner-Nordstrom 2 and
Reissner-Nordstrom -(anti) de Sitter spactime [10]and in
higher dimensional Myers-Perry spacetime [11].

II. METRIC AND FEILD EQUATION

Let us consider a conformal Weyl gravity. An exact
static, spherically symmetric black hole solution is given
by [1]

ds2 = −B(r)dt2 +
dr2

B(r)
+ r2(dθ2 + sin2 θdφ2) (1)

where the coordinates are defined in the range −∞ <
t < ∞, r ≥ 0, 0 ≤ θ ≤ π and 0 ≤ ϕ ≤ 2π, and the lapse
function, B(r) , is given by

B(r) = 1− β(2− 3βγ)

r
− 3βγ + γr − kr2 (2)

Here , k and are positive constants associated to the cen-
tral mass, cosmological constant and the measurements

of the departure of the Weyl theory from the Einstein -
de Sitter, respectively. [2]

III. ANALYTICAL SOLUTION OF GEODESIC
EQUATIONS

The geodesic motion in such a space-time is described
by the geodesic equation

dxµ

ds2
+ Γµ

ρσ

dxρ

ds

dxσ

ds
(3)

where Γµ
ρσ is the Christoffel symbol. The first constant

of motion is given by the normalization condition ds2 =
1
2gµν

dxµ

ds
dxν

ds = 1
2ϵ where for massive particles ϵ = 1 and

for light ϵ = 0. conserved energy and angular momentum

E = gtt
dt

ds
=

dt

ds
(1− β

(2− 3γβ)

r
− 3βγ + γr − kr2) (4)

L = gφφ
dφ

ds
= r2

dφ

ds
(5)

which reduce the geodesic equation to one ordinary dif-
ferential equation

dr

dτ
= E2 −B(r)(ϵ+

L2

r2
) (6)

Together with energy and angular momentum conserva-
tion we obtain the corresponding equations for r as func-
tions of φ

dr

dφ
=

r4

L2
(E2 −B(r)(ϵ+

L2

r2
)) (7)

Eq.(6) gives a complete description of the dynamics of
the geodesic motion. Eq.(6) suggests the introduction of
an effective potential

Veff = (1− β(2− 3γβ)

r
− 3βγ + γr − kr2)(ϵ+

L2

r2
) (8)

For the analysis of the dependence of the possible types
of orbits on the parameters of the space-time and the test
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particle or light ray it is convenient to use dimensionless
quantities. Thus, we introduce

β̃ =
β

m
, γ̃ = mγ, r̃ =

r

m
, k̃ = m2k (9)

and rewrite Eq.(7) as

(dr̃/dφ)2 = kϵLr̃6 − γϵLr̃5 + (E2L+ 3βγϵL − ϵL+ k)r̃4

+ (ϵβ(2− 3βγ)L − γ)r3 + (3βγ − 1)r̃2

+ β(2− 3γβ)r̃ = Rs(r̃) (10)

The major point in this analysis is that Eq.(10) implies
Rs ≥ 0 as a necessary condition for the existence of a
geodesic. Thus, the zeros of Rs are extremal values of
r̃(φ) and determine (together with the sign of Rs between
two zeros) the type of geodesic. The polynomial Rs is in
general of degree 6 and, therefore, has 6 (complex) zeros.
but the positive real zeros are of interest for the type
of orbit. As r̃ = 0 is a zero of Rs for all values of the
parameters, this zero is neglected in the following and

(dr̃/dφ)2 = kϵLr̃5 − γϵLr̃4 + (E2L+ 3βγϵL − ϵL+ k)r̃3

+ (β(2− βγ)L − γ)r2 + (3βγ − 1)r̃

+ β(2− γβ) = Rs(r̃) (11)

is considered instead of Rs. By a comparison of coeffi-
cients we can solve the equations for E2 and L dependent
on ϵ.

L =
(r − 3β)(γr − 3γβ + 2)

r2(−2kr3 + γr2 − 3γβ2 + 2β)
(12)

E2 =
2(−kr3 + γr2 − 3arβ + 3aβ2 + r − 2β)2

(r − 3β)(γr − 3γβ + 2)r
(13)

Fig.(1) the results of this analysis are shown for test par-
ticles. we introduce a new variable u = M/r, which
yields

(
du

dφ
)2 = (β(2− γβ))u3 + (3βγ − 1)u2

+ (β(2− βγ)L − γ)u+ (E2L+ 3βγϵL − ϵL+ k)

− γϵL
u

+
kϵL
u2

(14)

Null geodesics

For ϵ = 0 Eq.(14) is of elliptic type P3(u) =
∑3

i=0 aiu
i.

With the standard substitution u = 1
a3
(4y − a2

3 ) Eq.(14)
can be transformed to the Weierstrass form and so that
this equation turns into:

(
dy

dφ
)2 = 4y3 − g2y − g3 = P3(y), (15)

where g2 =
a2
2

12 −
a1a3

4 and g3 = a1a2a3

48 − a0a
2
3

16 − a3
2

216 The
analytical solution of Eq.(15) for ϵ = 0 is then given by

y(φ) = ℘(φ− φin) (16)

Then the solution of Eq.(10) acquires the form

r̃(φ) =
a3

4℘(φ− φin; g2, g3)− a2

3

. (17)

where

φin = φ0 +

∫ ∞

y0

dz√
4y3 − g2 − g3

, y0 =
a3
4r̃0

+
a2
12

(18)

depends only on the initial values φ0 and r0.

Timelike geodesics

For ϵ = 1 Eq. (14) should be rewritten as

(u
du

dφ
)2 = (β(2− γβ))u5 + (3βγ − 1)u4

+ (β(2− βγ)L − γ)u3 + (E2L+ 3βγϵL − ϵL+ k)u2

− γϵLu+ kϵL = p5(u) (19)

the solution of this equation is

u(φ) = −σ1

σ2
φ(σ) (20)

where σi is the i place derivative of Kleinian σ function
and σz is

σ(z) = Ceztkzθ[g, h](2ω−1z; τ), (21)

which is given by the Riemann θ-function with character-
istic [g, h]. A number of parameters enters here: the sym-
metric Riemann matrix τ , the period-matrix(2ω, 2ώ),
the periodmatrix of the second kind (2η, 2ή), the
matrixκ = η(2)−1 and the vector of Riemann constants
with base point at innity 2[g, h] = (0, 1)t + (1, 1)tτ . The
constant Ccan be given explicitly, see e.g. [6], but does
not matter here.then the analytical solution of Eq.(10) is

r̃(φ) = −σ2

σ1
φσ (22)

Orbits

According to the Fig(1) and the Eqs.((12) , (13)) there
are three regions. the physically acceptable regions are
given by those values of r, for which E2 ≥ Veff , The
following different types of orbits can be identified

1. Flyby orbits: r starts from ∞, then approaches a
periapsis r = rp and goes back to ∞.
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FIG. 1. different regions of geodesics movement of particles
for values:ϵ = 1, k = 1

3.105
, β = 1, α = 10−3.
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FIG. 2. effective potential of geodesics movement of parti-
cles. lateral line is second power of energy.

2. Bound orbits: r oscillates between two boundary
values rp ≤ r ≤ ra with 0 < rp < ra < ∞ .

3. Terminating bound orbits: r starts in (0, ra] for
0 < ra < ∞ and falls into the singularity at r = 0.

4. Terminating escape orbits: r comes from ∞ and
falls into the singularity at r = 0.

The four regular types of geodesic motion correspond
to different arrangements of the real and positive zeros
of R(r) defining the borders of R(r) ≥ 0 or, equivalently,
E2 ≥ Veff . number of real and positive zeros of Rs(r̃)
charaterize the possible orbits in every region. fore xam-
ple for the E =

√
0.94, L = 0.07 there is four real zeros,

see (potential of Fig (2)) and that there are two orbits
(Figs. (3 , 4):
bound orbit and terminating bound orbit which parti-

cle move from ra and falling to singularity of black hole.
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FIG. 3. E2 =
√
0.94, L = 0.07.terminating bound orbit.
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FIG. 4. E2 =
√
0.94, L = 0.07.bound orbit.

IV. CONCLUSION

In this work we considered the motion of massive and
masless test particles in the metric presented in [1].the
geodesic equations can be solved in terms of Weierstrass
elliptic functions and derivatives of Kleinian sigma func-
tions. The results obtained in this paper can also present
a usefull tool to calculate the exact orbits and their prop-
erties, including observables like the periastron shift of
bound orbits, the light de ection of flyby orbits, the de
ecton angle and the Lense-Thirring efect. It would be
interesting to extend this work to a charged and rotating
version.
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