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Here, we investigate the GSL of gravitational thermodynamics in the framework of modified Gauss-
Bonnet gravity or f(G)-gravity. We consider a spatially FRW universe filled with the matter and
radiation enclosed by the dynamical apparent horizon with the Hawking temperature. For two viable
f(G) models, we first numerically solve the set of differential equations governing the dynamics of
f(G)-gravity. Then, we obtain the evolutions of the Hubble parameter, the Gauss-Bonnet curvature
invariant term, the density and equation of state parameters as well as the deceleration parameter.
Finally, we examine the validity of the GSL. For the selected f(G) models, we conclude that both
models have a stable de Sitter attractor. The equation of state parameters behave quite similar to
those of the ΛCDM model in the radiation/matter dominated epochs, then they enter the phantom
region before reaching the de Sitter attractor with ω = −1. The deceleration parameter starts from
the radiation/matter dominated eras, then transits from a cosmic deceleration to acceleration and
finally approaches a de Sitter regime at late times, as expected. Furthermore, the GSL is respected
for both models during the standard radiation/matter dominated epochs. Thereafter when the uni-
verse becomes accelerating, the GSL is violated in some ranges of scale factor. At late times, the
evolution of the GSL predicts an adiabatic behavior for the accelerated expansion of the universe.

I. THE F (G) THEORY OF GRAVITY

One of interesting alternative theories of gravity is
modified Gauss-Bonnet gravity, so-called f(G)-gravity,
where f(G) is a general function of the Gauss-Bonnet
curvature invariant term G = R2 − 4RµνRµν +
RµνρσRµνρσ [1–5]. The f(G)-gravity has recently been
obtained a lot of tendency as a possible description of DE
[6]. This kind of modified gravity (MG) theory has differ-
ent particulars, among stability, the ability of description
the present accelerated expansion of the universe, phan-
tom divide line crossing and transition from deceleration
to acceleration phases [7]. The action of modified Gauss-
Bonnet gravity is given by [3]:

I =
∫

d4x
√−g

(
1

2k2
R + f(G) + Lr + Lm

)
, (1)

where k2 = 8πGN = 1 and GN is the Newtonian gravi-
tational constant. Also g, R, Lr, Lm and f(G) are the
determinant of metric gµν , Ricci scalar, the matter La-
grangian, the radiation Lagrangian and a general func-
tion of the Gauss-Bonnet term, respectively. For a spa-
tially flat FRW universe, we have

R = 6
(
Ḣ + 2H2

)
, G = 24H2

(
Ḣ + H2

)
, (2)

where H = ȧ/a is the Hubble parameter and an overdot
stands for a derivative with respect to the cosmic time t.
Also, the Friedmann equations in f(G)-gravity take the
form [8]

H2 =
1
3
ρt, Ḣ = −1

2
(
ρt + pt

)
. (3)

Here ρt and pt are the total energy density and pressure
defined as

ρt = ρm + ρr + ρG, pt = pm + pr + pG, (4)

where ρm and ρr are the energy density of matter and
radiation, respectively. Also ρG and pG are the energy
density and pressure due to the f(G) contribution defined
as

ρG = GfG − f − 24H3ḟG, (5)

pG = 16H3ḟG + 16HḢḟG + 8H2f̈G −GfG + f. (6)

Moreover, the continuity equations governing the pres-
sureless matter (pm = 0), the radiation (pr = ρr/3) and
the f(G) contribution are satisfied. By using of Eqs. (5)
and (6), one can obtain the equation of state (EoS) pa-
rameter due to the f(G) contribution as ωG = pG/ρG.
Also from Eq. (3), the effective EoS parameter can be
obtained as ωeff = pt/ρt = −1− 2Ḣ

3H2 .

II. GSL IN F (G)-GRAVITY

As one of the most important theoretical touchstones
to examine whether f(G)-gravity can be an alterna-
tive gravitational theory to general relativity, we explore
the GSL of thermodynamics on the apparent horizon in
f(G)-gravity, and obtain the condition for the GSL to be
satisfied. The GSL says that the sum of horizon entropy
and matter entropy inside the horizon must not decrease
with time [9]. Now, we consider a spatially flat FRW
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universe filled with the matter and radiation. We further
assume that the boundary of the universe to be enclosed
by the dynamical apparent horizon with the Hawking
temperature. The dynamical apparent horizon in a flat
FRW universe is same as the Hubble horizon [10]. Fol-
lowing [9], the associated Hawking temperature on the
apparent horizon r̃A is given by

TA =
1

2πr̃A

(
1−

˙̃rA

2Hr̃A

)
. (7)

Now we are going to use the first law of thermodynam-
ics to find the general condition needed to hold the GSL
in f(G)-gravity. The entropy of matter and radiation
inside the horizon are given by the Gibbs equation [11]

TAdSm = dEm + pmdV, (8)

TAdSr = dEr + prdV, (9)

where Em = ρmV and Er = ρrV . Also V = 4πr̃3
A/3 is the

volume of the dynamical apparent horizon r̃A containing
the pressureless matter (pm = 0) and radiation (pr =
ρr/3).

Taking time derivative of Eqs. (8) and (9) and using
the continuity equations one can get

TAṠ =
2π

(
Ḣ + H2

)

H4

[
4Ḣ − 16H

(
H2 − 2Ḣ

)
ḟG +

16H2f̈G

]
. (10)

where S = Sr +Sm. The horizon entropy in f(G)-gravity
is given by [6]

SA = 8π2
(
H−2 + 8fG

)
. (11)

Using Eqs. (7), (10) and (11), the GSL in f(G)-gravity
yields

TAṠtot =
2π

H4
×

[
2Ḣ2 + 8HḢ

(
4Ḣ + 3H2

)
ḟG + 16H2

(
Ḣ + H2

)
f̈G

]
, (12)

where Stot = Sr + Sm + SA. Equation (12) shows that
in f(G) gravity, the validity of the GSL, i.e. TAṠtot ≥ 0,
depends on the explicit form of the f(G) model. For the
Einstein gravity (f(G) = 0), one can immediately find
that the GSL (12) reduces to

TAṠtot =
4πḢ2

H4
≥ 0, (13)

which shows that the GSL is always fulfilled through-
out history of the universe. In what follows, we examine
the validity of the GSL (12) for two viable f(G)-gravity
models.

III. TWO VIABLE F (G) MODELS

Here, we are interested in examining the GSL for two
viable f(G) models which are introduced by [3,4] to ex-
plain the accelerated expansion of the universe at present.
The first model has the form [3]

f(G) = α
(
G

3
4 − β

) 2
3

, Model I, (14)

where α and β are two constants of the model. The
second f(G) model is given by [4]

f(G) = λ
G√
G∗

arctan
(

G

G∗

)

−λ

2

√
G∗ ln

(
1 +

G2

G2∗

)
− αλ

√
G∗, Model II, (15)

where α is an arbitrary constant and λ is a positive con-
stant. Also G∗ = H4

0 and H0 is the Hubble parameter at
present.

With choice of suitable initial conditions, we numer-
ically solve the differential equations governing the dy-
namics of f(G)-gravity for both model I and model II
[12]. The evolutions of the Hubble parameter H, the
Gauss-Bonnet curvature invariant term |G| and the quan-
tity H6fGG versus N = ln(a/ai) for model I and model II
are plotted in Figs. 1 and 2, respectively. Figures show
that: (i) the Hubble parameter decreases during history
of the universe. (ii) The GB term switches its sign dur-
ing the transition from the standard radiation/matter
dominated epochs to the accelerated era (which corre-
sponds to passing through the minus infinity in logarith-
mic scale). (iii) The quantity H6fGG satisfies the con-
dition 0 < H6

1fGG(G1) < 1/384 which shows that both
models have a stable de Sitter attractor. (iv) H, |G| and
H6fGG at late times go to a constant value when the
universe enters a de Sitter regime. Notice that the result
of Fig. 2 for model II is the same as that obtained in [4].

The evolutions of the density parameters Ωr, Ωm, ΩG

and the effective EoS parameter ωeff , versus N for model
I and model II are plotted in Figs. 3 and 4, respec-
tively. Figures illustrate that: (i) for both models, Ωr,
Ωm, ΩG and ωeff behave quite similar to those of the
ΛCDM model in the radiation/matter dominated epochs.
(ii) For model I, ωeff oscillates rapidly during the acceler-
ated epoch and goes deep into the phantom-like region as
the universe enters the de Sitter period. (iii) For model
II, ωeff oscillates slowly around −1 as the system enters
the epoch of cosmic acceleration, which implies that the
de Sitter solution is a stable spiral. Note that the results
of Figs. 3 and 4 are the same as those obtained in [3] and
[4], respectively.

The evolution of the deceleration parameter q = −1−
Ḣ/H2, for model I and model II is plotted in Figs. 5 and
6, respectively. Figure 5 clears that for model I, the de-
celeration parameter starts from q = 1 corresponding to
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FIG. 1. The evolutions of the Hubble parameter H, the
Gauss-Bonnet curvature invariant term |G| and the quantity
H6fGG, versus N = ln(a/ai) where ai is the initial value of
the scale factor. Auxiliary parameters are: α = 1

40
√

66
and

β = −10−17.
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FIG. 2. Same as Fig. 1 but for model II. Auxiliary param-
eters are: α = 10 and λ = 0.075.

the radiation dominated epoch, then shows a cosmic de-
celeration (q > 0) to acceleration (q < 0) transition [13]
and finally oscillates rapidly into the de Sitter regime
(q = −1). Figure 6 presents that for model II, q varies
from the matter dominated epoch (q = 0.5), then tran-
sits from a cosmic deceleration to acceleration and ap-
proaches smoothly a de Sitter regime at late times, as
expected.

Finally, we examine the validity of the GSL for both
models. In Figs. 7 and 8, we plot the variation of the
GSL, Eq. (12), versus N for model I and model II, re-
spectively. Figures illustrate that for both models, the
GSL during the radiation/matter dominated epochs is
fulfilled. Thereafter when the universe enters the cosmic
acceleration era, i.e. q < 0 see Figs. 5 and 6, the GSL
does not hold (i.e. TAṠtot < 0) in some ranges of N . At
late times, the GSL for model I oscillates rapidly and for
model II approaches smoothly into the de Sitter universe,
adiabatically (i.e. TAṠtot = 0).
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FIG. 3. The evolutions of Ωm, ΩG, Ωr and ωeff , versus N .
Auxiliary parameters as in Fig. 1.
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FIG. 4. Same as Fig. 3 but for model II. Auxiliary param-
eters as in Fig. 2.

IV. CONCLUSIONS

One of gravitational alternative theories for DE is
f(G)-gravity, in which DE emerges from the modifica-
tion of the Gauss-Bonnet invariant term. Here, we in-
vestigated the GSL of gravitational thermodynamics in
the framework of f(G)-gravity. To do so, we considered
a spatially flat FRW universe filled with the pressure-
less matter and radiation. We supposed the boundary of
the universe to be enclosed by the dynamical apparent
horizon with the Hawking radiation. We derived a gen-
eral relation for the GSL which its validity depends on
f(G)-model. Hence, for two viable f(G)-models, we first
solved numerically the set of differential equations gov-
erning the dynamics of f(G)-gravity. Then, we examined
the validity of the GSL for the two selected f(G)-models.
Our results show that the GSL is fulfilled for both models
during the standard radiation/matter dominated epochs.
But when the universe becomes accelerating, the GSL is
violated (i.e. TAṠtot < 0) in some ranges of scale fac-
tor. At late times, the evolution of the GSL predicts an
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FIG. 5. The evolution of the deceleration parameter q ver-
sus N for model I. Auxiliary parameters as in Fig. 1.
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FIG. 6. Same as Fig. 5 but for model II. Auxiliary param-
eters as in Fig. 2.

adiabatic behavior (i.e. TAṠtot = 0) for the accelerated
expansion of the universe.
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