
 

The Effect of magnetic diffusivity parameter on Two Dimentional 
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ABSTRACT 
The aim of this paper is to investigat the role of magnetic diffusivity parameter on the 

structure of ADAFs. We use the self-similar assumption in radial direction to solve the 

MHD equations for hot accretion disks. The toroidal component of magnetic field and all 

three components of the velocity field 𝐯 ≡ (𝑣𝑟 , 𝑣𝜃 , 𝑣𝜑) are considered in our work. Our 

results indicate that the outflow region, where the redial velocity becomes positive in a 

certain inclination angle θ  0
 , always exists. We see that the stronger magnetic diffusivity 

parameter does not have any sensible effect on the inclination angle, θ .0
  Numerical 

calculations of our model have revealed that the magnetic diffusivity parameter has a 

significant effect on the vertical structure of accretion disks.  

Key words: accretion, accretion disks, MHD, magnetic diffusivity, outflow. 

 

INTRODUCTION 

Accretion disks are challenging and controversial issues, in recent decades, which have attracted 

researchers to study the various models. Many theoretical models have been proposed for better 

recognitions of accretion disks. One of them is the standard accretion disk model which is 

presented by Shakura & Sunyaev (1973). Another model is advection-dominated accretion flows 

model (ADAF). Structure of accretion disks is undergoing the thermal conduction, magnetic field, 

viscosity, etc. Magnetic fields have a great significance in accretion disks. They can have two 

sources. Disks could either itself has a continual magnetic field or its magnetic field be derived 

from external sources (see Moffat 1978). The effects of a magnetic field on the structure of 

ADAFs were also studied extensively (Balbus & hawley 1998; Kaburaki 2000; Shadmehri 2004; 

Meier 2005; Shadmehri & Khajenabi 2005, 2006; Ghanbari et al. 2007; Abbassi et al. 2008, 2010; 

Bu et al. 2009). Indeed the crucial role of magnetic field in a hot flow is expected because of the 

high temperature of accreting gas in ADAFs (109 − 1012 K). For the first time Lynden-Bell 

(1969) considered the role of magnetic field in the context of active galactic nuclei and found how 

it might be responsible for angular momentum transport and the origin of anomalous disk 

viscosity. Narayan & Yi (1995) by using the self- similar method in radial direction, solved the 

disk structure along θ direction. The self-similar approach adopted by Narayan & Yi (1995) is 

only partially supported by numerical simulations, i.e., there exists a new class of accretion flow, 

which is hot and optically thin and it is advection dominated. Also recent researches indicate that 

outflow is commonly observed to be associated with the hot accretion flows (Stone & Pringle 

2001, De Villiers, Hawley, Krolik & Hirose 2005; Ohsuga & Mineshige 2011, Yuan et al. 2012a, 

2012b). Moreover, numerical simulations indicate that 𝑣𝜃 is non-zero (Stone, Pringle & 

Begelman 1999; Ohsuga & Mineshige 2011; Yuan, Bu & Wu 2012). The ADAFs solutions with 

wind were reported by Abbassi et al. (2008, 2010), Mosallanezhad et al. (2013; hereafter MAB) 

where the effects of wind and outflow are achieved by adding relevant terms in MHD equations.  
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THE BASIC EQUATIONS AND SELF-SIMILAR SOLUTIONS 

Here, we consider a steady state (𝜕 𝜕𝑡⁄ =  0) and axisymmetric (𝜕 𝜕𝜑⁄ =  0) situation. Spherical 

coordinates are used (𝑟, 𝜃, 𝜑). We neglect self-gravity of the accreting flow and relativistic 

effects, and use only the Newtonian gravity of the central object in our model. The magnetic field 

is considered with toroidal configurations 𝑩 = (0,0, 𝐵𝜑) and we adopt α-prescription for effective 

turbulent viscosity. Thus the MHD equations, are as follows:  

 
𝐷𝜌

𝐷𝑡
+ 𝜌𝜵. 𝒗 = 0                                        (1)       ,       𝜌

𝐷𝒗

𝐷𝑡
= −𝜌𝜵𝜓 − 𝜵𝑃 +

1

𝐶
𝑱 × 𝑩 + 𝜵. 𝑻                       (2) 

𝜌 [
𝐷𝑒

𝐷𝑡
+ 𝑃

𝐷

𝐷𝑡
(

1

𝜌
)] = 𝑄+ − 𝑄− + 𝑄𝑐𝑜𝑛𝑑 ≡ 𝑄𝑎𝑑𝑣 + 𝑄𝑐𝑜𝑛𝑑      (3)    ,     

𝜕𝑩

𝜕𝑡
= 𝜵 × (𝒗 × 𝑩 −

4𝜋

𝐶
𝜂 𝑱)     (4) 

where  ρ, v ≡ (𝑣𝑟 , 𝑣𝜃 , 𝑣𝜑), ψ, p, B, J ≡ (c/4π)∇ × B and T are the mass density, velocity vector, 

gravitational potential, gas pressure, magnetic field, current density, and the tensor of viscous 

stress, respectively. Now we reformulate the basic equations (1)-(4) in spherical coordinates and 

by using Self-similar method, investigate the set of our equations in two dimentions (r, θ) as 

follows 

   𝑣𝑟(𝑟, 𝜃) = 𝑣𝑟(𝜃)√
𝐺𝑀∗

𝑟
   ,   𝑣𝜃(𝑟, 𝜃) = 𝑣𝜃(𝜃)√

𝐺𝑀∗

𝑟
          ,     𝑣𝜑(𝑟, 𝜃) = 𝑣𝜑(𝜃)√

𝐺𝑀∗

𝑟
   

    𝜌(𝑟, 𝜃) = 𝜌(𝜃)𝑟−𝑛      ,      𝑃(𝑟, 𝜃) = 𝑃(𝜃)𝐺𝑀∗𝑟−𝑛−1   ,     𝐵𝜑(𝑟, 𝜃) = 𝑏(𝜃)√𝐺𝑀∗𝑟
−𝑛

2
−

1

2  

We arrived to these equations 

𝜌(𝜃) [(𝑛 −
3

2
) 𝑣𝑟(𝜃) − 𝑣𝜃(𝜃) 𝑐𝑜𝑡 𝜃 −

𝑑𝑣𝜃(𝜃)

𝑑𝜃
] − 𝑣𝜃

𝑑𝜌(𝜃)

𝑑𝜃
= 0                                                                                        (5) 

𝜌(𝜃) [
1

2
𝑣𝑟

2(𝜃) + 𝑣𝜃
2(𝜃) + 𝑣𝜑

2(𝜃) − 𝑣𝜃(𝜃)
𝑑𝑣𝑟(𝜃)

𝑑𝜃
− 1] + (𝑛 + 1)𝑃(𝜃) +

1

8𝜋
(𝑛 − 1)𝑏2(𝜃) = 0                               (6) 

𝜌(𝜃) [𝑣𝜑
2(𝜃) 𝑐𝑜𝑡 𝜃 −

1

2
𝑣𝑟𝑣𝜃 − 𝑣𝜃(𝜃)

𝑑𝑣𝜃(𝜃)

𝑑𝜃
] −

𝑑𝑃

𝑑𝜃
−

1

4𝜋
𝑏(𝜃) {𝑏(𝜃) 𝑐𝑜𝑡 𝜃 +

𝑑𝑏(𝜃)

𝑑𝜃
} = 0                                        (7) 

𝑣𝜑(𝜃) [
3

2
𝛼(𝑛 − 2)𝑃(𝜃) (1 +

𝑏2(𝜃)

8𝜋𝑃(𝜃)
) − 𝜌(𝜃) {𝑣𝜃 𝑐𝑜𝑡 𝜃 +

1

2
𝑣𝑟(𝜃)}] − 𝜌(𝜃)𝑣𝜃(𝜃)

𝑑𝑣𝜑(𝜃)

𝑑𝜃
= 0                              (8) 

𝑃(𝜃) {𝛾𝑣𝜃(𝜃)
𝑑𝜌(𝜃)

𝑑𝜃
− (𝑛𝛾 − 𝑛 − 1)𝑣𝑟(𝜃)𝜌(𝜃)

+ 𝑓(𝛾 − 1) (1 +
𝑏2(𝜃)

8𝜋𝑃(𝜃)
) [

9

4
𝛼𝜌(𝜃)𝑣𝜑

2(𝜃)

+
𝜂0

4𝜋
{(𝑏(𝜃) 𝑐𝑜𝑡 𝜃 +

𝑑𝑏(𝜃)

𝑑𝜃
)

2

+ (
1

2
(𝑛 − 1)𝑏(𝜃))

2

}]} − 𝜌(𝜃)𝑣𝜃

𝑑𝑃(𝜃)

𝑑𝜃

+
𝜆0

𝜌
{𝑃 + 𝑐𝑜𝑡 𝜃 (𝑃̇ −

𝑃𝜌̇

𝜌
) + (𝑃̈ −

𝑃𝜌̈

𝜌
) −

2𝑃̇𝜌̇

𝜌
+

2𝑃𝜌̇2

𝜌2 } = 0                                                       (9) 

𝜂0

𝑃(𝜃)

𝜌(𝜃)
{(1 +

𝑏2(𝜃)

8𝜋𝑃(𝜃)
) {

𝑑2𝑏(𝜃)

𝑑𝜃2 +
𝑑𝑏(𝜃)

𝑑𝜃
𝑐𝑜𝑡 𝜃 +

1

4
𝑛(𝑛 − 1)𝑏(𝜃) −

𝑏(𝜃)

𝑠𝑖𝑛2𝜃
}

+ (𝑏(𝜃) 𝑐𝑜𝑡 𝜃 +
𝑑𝑏(𝜃)

𝑑𝜃
) [(1 +

𝑏2(𝜃)

8𝜋𝑃(𝜃)
) {

𝑃̇

𝑃
−

𝜌̇

𝜌
} +

𝑏2(𝜃)

8𝜋𝑃(𝜃)
{

2𝑏̇

𝑏
−

𝑃̇

𝑃
}]} +

𝑛

2
𝑣𝑟(𝜃)𝑏(𝜃)

− 𝑣𝜃

𝑑𝑏(𝜃)

𝑑𝜃
− 𝑏(𝜃)

𝑑𝑣𝜃(𝜃)

𝑑𝜃
= 0                                                                                                           (10) 

where λ0 , Φ𝑠 are two thermal conduction parameters that are simply related to each other by 𝜆0 ≅
5𝜌(𝜃)𝐶𝑠(𝜃)Φ𝑠 . Parameter Φ𝑠 is the saturated thermal flux and it is smaller than unity. Tanaka& 

Menou (2006) applied some approximations and they concluded that 𝜆0 ≈ 8.4Φ𝑠.  

Here we have 𝜌(𝜃), 𝑝(𝜃), 𝑏(𝜃), 𝑣𝑟(𝜃), 𝑣𝜃(𝜃), 𝑣𝜑(𝜃), the variable θ and eight input parameters 

(𝛼, 𝑓, 𝛾, 𝑛, 𝜂0, 𝛽0, 𝛷𝑠, 𝜆0), in which 𝛽0 is the ratio of the gas pressure to the magnetic pressure at the 

equatorial plane which is considered to be constant.   β0 =
Pgas

Pmag
|900 = 8π

P

b2
|900        
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The set of OEDs can be solved numerically with proper boundary conditions. We assume the 

structure of the disk is symmetric to the equatorial plane, and then we have 

θ = 900 ∶      vθ =
dρ

dθ
=

dP

dθ
=

dvr

dθ
=

dvφ

dθ
=

db

dθ
= 0           ,      𝜌(90° )  =  1 

Now by putting the above boundary conditions into the equations (5)-(10), we obtain 
 

vr|90° =  E1P|90°      ,    
dvθ

dθ
|90° = (n −

3

2
) vr|90°    ,  vφ

2 |90° =
E1E3−E4

E2
P|90° ,    𝑃|90° =

−𝐵±√𝐵2−4𝐴𝐶

2𝐴
   

1

2
vr

2|90° + vφ
2 |90° + [(n + 1) +

(n−1)

β0
] P|90° − 1 = 0   ,    

d2b

dθ2 |90° = (E1E5 + E6)
b

P
|90°    

E1 = 3α(n − 2)(1 + β0
−1)  ,   E2 =

9

4
fα(γ − 1)(1 + β0

−1)    ,   E3 = nγ − n − 1     

E4 =
1

2
fη0(γ − 1)β0

−1(n − 1)2(1 + β0
−1)      E5 =

−n

2η0

(1 + β0
−1)     ,   E6 = 1 −

1

4
n(n − 1)       

A =
E1

2

2
    ,    B =

E1E3−E4

E2
+ (n + 1) + (n − 1)β0

−1   ,    C = −1 

Magnetic field is an important quantity for determining the behavior and structure of the disk. We 

investigate the structure of our thick disk in the presence of magnetic field. Fig. 1 shows the effect 

of various values of magnetic field parameter 𝛽0 on the profiles of the physical variables along θ 

direction. In which we adopt α = 0.3, γ = 5 3⁄ , f = 1, η = 0.3, n = 1 and Φ𝑠 = 0.03. In this Fig, 

dotted, dashed and solid lines correspond to 𝛽0 = 104, 𝛽0 = 103 and 𝛽0 = 102 respectively. 

According to Fig. (1-a), we see that 𝛽0 affects a little on the inflow region (𝑣𝑟(𝜃) < 0). But it 

makes tangible changes in the amount of outflow. In other words, the toroidal component of 

magnetic field prevents the material outflow from the surface of the disk. Moreover, as seen in 

Fig. (1-b) the stronger magnetic field does not have any sensible effect on the 𝑣𝜑. But in Fig. (1-

c) we see that the stronger magnetic field enlarges the value of 𝑣𝜃 in the midplane (the negative 

direction of 𝑣𝜃 is indicative that material moves from the equator to the polar axis of the disk). It 

is predicted that (Fig. 1-d) the mass density at first increases slightly and then decreases along θ 

direction towards the disk surface by increasing 𝛽0. Therefore we can conclude that mass density 

in areas close to the equator is more than areas close to the disk poles. Fig. 2 shows the effect of 

magnetic diffusivity parameter 𝜂0 on the profiles of the physical variables. The dotted, dashed 

and solid lines correspond to 𝜂0 = 0.2, 𝜂0 = 0.3 and 𝜂0 = 0.4 respectively. We supposed that 𝛼 =

0.3, 𝛽0 = 103 , 𝑓 = 1, 𝛾 =  5/3 and 𝑛 = 1. The radial and azimutal velocities will slightly increase 

as 𝜂0 increases (Figs 2-a, c). By moving towards disk surface and approaching the vertical axis, 

as 𝜂0 increases 𝑣𝜃, P and 𝜌 decreas (Figs.2-b, d, e). Fig. (2-f) is dedicated to variations of the 

magnetic field. By looking at this Fig., we can conclude that variations of 𝜂0 parameter have a 

main effect on the magnetic field strength. We adopt values of 0.15, 0.2 and 0.25 for viscosity 

parameter, 𝛼. According to Fig (3-a), by increasing the parameter α, radial velocity becomes more 

negative. This means that inflow increases. Therefore we achieve to the outflow in smaller angles. 

According to Fig (3-b) the magnetic field increases by increasing α and the magnetic field is 

stronger near the vertical axis. Gas pressure becomes smaller for larger values of α. In other words, 

by increasing the viscosity parameter, gas pressure decreases in the regions close to the disk 

surface, approximately (Fig. 3-c). 

DISCUSSION 

The main aim in this paper is to verify the effect of the magnetic diffusivity parameter on the 

structure of ADAFs along the θ direction. Since we also have considered 𝑣𝜃 ≠ 0, our solutions 

represent an inflow-outflow behavior. Here, we may also investigate the effects of the magnetic 

field parameters (𝛽0, 𝜂0) and viscosity parameter (𝛼), on the ADAFs structure. Our results show 

that inflow and outflow behaviors are not sensitive to 𝜂0 changes but by increasing 𝜂0 the velocity 

of winds driven from the surface of the disk and compression of the mass and pressure in 

approaching the vertical axis decreases. Therefore we observe that 𝛼 and 𝛽0 reduce the outflow 

in which it causes the reduction of the disk thickness. 
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Figure 1. Profiles of the physical variables corresponding to ADAFs model along θ-direction for different values of 

the gas pressure to the magnetic pressure in midplane of the disk,𝛽0.The dotted, dashed and solid lines denote 𝛽0 =
102, 103, 104respectively. Here α = 0.3, 𝛾 = 5/3, f = 1, 𝜂0 = 0.3 and n = 1. 

Figure 2. Profiles of the physical variables corresponding to ADAFs model along θ-direction for different values of 

magnetic diffusivity parameter, 𝜂0. The dotted, dashed and solid lines denote 𝜂0 = 0.2, 0.3 and 0.4 respectively. Here 

α = 0.3,𝛽0 = 103,f = 1,  𝛾 = 5/3 and n = 1. 

Figure 3. Profiles of the physical variables corresponding to ADAFs model along θ-direction for different values of 

viscosity parameter, 𝛼 
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