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Investigation of non-Canonical Intermediate Inflation in light of Planck 2015
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Intermediate inflation is considered in a non-canonical scalar field model, in which the kinetic term
of scalar field is taken as a power-law function. The free parameters of the model are constrained by
using the most recent observational data related to scalar spectra index, tensor-to-scalar ratio, and
scalar perturbation amplitude. The results are used to depict the potential behavior of the model

and estimate the initial and final time of inflation.
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I. INTRODUCTION

Inflationary scenario is known as the best candidate
for describing very early evolution of the Universe. The
scenario was first introduced by Alan Guth , as a possible
solution to the Big Bang model problems. Since there,
various models of inflation have been introduced, based
on canonical scalar field dynamics which dominates the
Universe and has a negligible interaction with the other
components of matter. Inflationary scenario properly
solves the hot Big Bang model problems, not to men-
tion the fact that the scenario predicts an interesting
feature as quantum perturbations in the early times of
the Universe evolution, that has received huge interest.
The perturbations are separated to scalar, vector and
tensor perturbation [1]. Amongst them, scalar perturba-
tion, seeds for large scale structure of the Universe, and
tensor perturbation, known as gravitational wave too,
are the most important ones. The latest observational
data comes from Planck data which released on Febru-
ary 2015 [2]. This states that the amplitude of scalar per-

turbation is about In (1010143) = 3.094, and the scalar

spectra index is about ny = 0.9645. In contrast with
scalar perturbation, Planck does not give an exact value
for tensor-to-scalar ratio r. It only specifies an upper
bound for this parameter as r < 0.10 [2].

One of inflationary scenarios is ”intermediate inflation”
[3], where the scale factor gets an exponential function
of time as a(t) = exp (At*), A > 0 and 0 < a < 1. This
can be acquired from a potential asymptotically looks
like negative power but not exactly [4]. The scenario
indicates on a expansion faster than power-law inflation
(a(t) = tP,p > 1), and slower than de-Sitter inflation
(a(t) = exp(Ht), H = cte). Intermediate inflation in Ein-
stein gravity creates a scale invariant perturbation when
a = 2/3 [3]. The scenario is able to satisfy the bound
on scalar spectra index ns; and tensor-to-scalar ratio r,
measured by observation on CMB [5].

Recently the cosmological models of scalar field in-

213

cluding non-canonical kinetic term have played a signif-
icant role in cosmological studies. The general form of
its action is expressed by L4 = {(¢)F(X)V(¢), where
X = (V,oV#9)/2 [6]. The case with V(¢) = 0 leads
to a well-known model as k-essence. The main idea of
k-essence comes from Born-Infold action of string theory
[7]. The model is able to give some interesting results
about dark energy [8]. In [9], the model is applied as a
possible way for inflation and describing early time evo-
lution of the universe.

In the present work, we are going to take f(¢) = 1, and
V(¢) as scalar field potential; in other word, we take a
pure kinetic k-essence plus a potential term. This kind
of model is known as non-canonical scalar field [10]. This
case is another class of the general form which could be
as important and interesting as k-essence model. The
cosmological solution of the model has been studied in
[10], where it was shown that it is possible to build up a
unified model of dark matter and dark energy for a sim-
ple form of non-canonical kinetic term F(X). The same
case has been considered in [11] where the authors found
that producing a unified model of dark matter and dark
energy for a pure kinetic k-essence is very difficult. It
sounds that the non-canonical scalar field model is capa-
ble to be an appropriate model of the universe evolution
and has merit for considering in more detail. Then, we
motivated to use non-canonical scalar field in intermedi-
ate inflation scenario as a possible model for describing
one of earliest universe evolution. In this regards, the ki-
netic term is taken as a power-law function of X, and the
general form of evolution equation are obtained. Conse-
quently, the model contains some free parameters, that
are aimed to be determined by using the newest obser-
vational data. Therefore, it is absolutely necessary to
discuss perturbation of the model and derive related pa-
rameters. The perturbation parameters which are being
to use, are scalar spectra index, tensor-to-scalar ratio and
scalar perturbation amplitude. The result indicates on
the presence of a non-canonical term for kinetic energy
term, and o > 2/3.
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II. NON-CANONICAL SCALAR FIELD MODEL

The general form of Lagrangian could be read as

MG
s= [ 150V T |2 R+ La 1)

where L,/ is the Lagrangian of non-canonical scalar field
which is defined as Lo = F(X)—V(¢). The kinetic term
of non-canonical scalar field is denoted by F'(X), which it
is an arbitrary function of X (where X = —g"*V ,0V,¢).
At the rest of the work, the kinetic term is taken as a
power-law function of X as F(X) = FyX".

Variation of action with respect to independent variables
g and ¢, and substituting the spatially flat FRW metric
comes to the Friedmann evolution equations. In addition,
taking variation of the action with respect to the scalar
field results in the wave equation, which is a restate of
energy conservation relation. Surely the case for n =1
and Fy = 1 comes to usual canonical scalar field model.

Intermediate inflation scenario illustrates an expan-
sion phase that stays between power-law inflation and
de-Sitter expansion in very early times. In this scenario,
the scale factor of the Universe is given by an exponential
function of time as a(t) = exp (At®), in which « stands
in the range 0 < a < 1, and A is a constant to justify
the dimension.

Applying the assumption on Friedmann eqiations, the
scalar field is derived as a function of cosmic time, and
in turn the potential could be depicted as a function of
scalar field.

In order to have a quasi-de Sitter expansion during in-
flation, the time rate of the Hubble parameter during
a Hubble time should be smaller than unity [12]. The
same behavior is usually assumed for time derivative of
scalar field [12]. These conditions are known as slow-
roll approximations, and based on them we defined the
main slow-roll parameters as following ey = -H /H? and
Ny = —¢/H$ [12]. As a first condition for inflation, there
must be positive acceleration for the Universe, that is
satisfied when the slow-roll parameter ey is smaller than
unity. Amount of inflation during inflation time period
is measured by number of e-folds parameter defining as
N =In (a(te)/a(t;)). Then, the initial and final value of
the scalar field during inflation are read as

2o (1—a)F%  2me v
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The constant parameters are aimed to be specified us-
ing the latest observational data. In this regards, study-
ing perturbation is absolutely necessary. Inflationary
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models predict three kind of perturbations as scalar, vec-
tor and tensor perturbation. One of the most important
metric perturbation is scalar perturbation. Scalar fluc-
tuations become seeds for cosmic microwave background
(CMB) anisotropies, or for large scale structure (LSS)
formation. The amplitude of scalar perturbation could
be derived doing some calculation, and it is given by [13]

HA
Ame

Ir(p+ \/)
where c4 is sound speed, that is constant, equal to ¢4 =
(2n—1)~" (reader could refer to [13] for more detail). De-
pendence of scalar perturbation on wavenumber k is de-
scribed by ng known as scalar spectra index. The param-
eter is given by ng—1 = dIn(P) /[ In(||) = —Aey+€\nxy.
In addition to scalar fluctuation, the inflationary scenario
predicts tensor fluctuation, which is known as a gravita-
tional wave, too. It has been found out that the tensor
fluctuations play a significant role, and they should be
more attended for determining best-fit values of the cos-
mological parameters from the CMB and LSS spectra.
The amplitude of tensor perturbation is obtained as [13]

Py (3)

Vo OHE

= M& A€ @
v

Pr

The tensor spectra index is defined in a similar way, given
by np = dIn(Pr)/[In(]]) = —€ex.

The imprint of tensor fluctuation on the CMB brings
the idea to indirectly determine its contribution to power
spectra by measuring CMB polarization. Such a contri-
bution could be exhibited by the r quantity, which is
known as tensor-to-scalar ratio and represents the rela-
tive amplitude of tensor-to-scalar fluctuation,

_& o 16€H
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Therefore, constraining r is one of the main goals of the
modern CMB survey. According to the current accu-
racy of observations, it is only possible to place an up-
per bound on the allowed range of r [14]. The latest
data about the quantity comes from Planck collabora-
tion on February 2015. Planck full mission data for
ACDM+r model resulted in a new constraint on the
quantity r as r < 0.10 (Planck TT,TE,EE+lowP), < 0.11
(Planck TT+lowP+lensing) at 95% C.L. Note that, as we
concentrate on Planck-2015 data about the quantity r,
we realize that the previous mentioned constraint could
rise in some cases. For instance, according to [2], for
ACDM + r 4+ dlnng/dInk model, there is r < 0.176
(Planck TT+lowP+lensing)

()
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III. OBSERVATIONAL CONSTRAINT

The provided argument simplifies our way to determine
the free parameters of the model by utilizing the latest
observational data. In this regards, the perturbation pa-
rameters are being computed at the end of inflation. In
the first step, we turn our attention to scalar spectra in-
dex, tensor-to-ratio parameter, and amplitude of scalar
perturbation. The final result has been prepared in the
following table for different values of ng, r, and N.

Ns 0.9625 0.9635
r | 0.08 0.10 0.12 0.08 0.10 0.12
N =60|a | 0.685 0.685 0.685 | 0.697 0.697 0.697

n | 1.646 1.233 1.009 | 1.528 1.158 0.957

nr|—0.015 —0.015 —0.015|-0.014 —0.014 —0.014

A | 1.309 1.413 1.504 | 1.748 1.890 2.014
t; | 2.000 1.788 1.633 | 2.075 1.856 1.694
te | 2470 2209 2.016 | 2.456 2.200 2.008
N =65|a | 0.651 0.651 0.651 | 0.662 0.662 0.662
n | 1.836 1.355 1.093 | 1.706 1.271 1.036

nr|—0.016 —0.016 —0.016|—-0.015 —0.015 —0.015

A | 0.543 0.582 0.620 | 0.726 0.781 0.830
t; | 1.804 1.614 1.473 | 1.884 1.685 1.538
te | 2.898 2592 2.366 | 2.873 2.570 2.346

TABLE I. Constraint on the parameters n and « based
on Planck data about scalar and tensor spectra indices. The
quantity A is defined as A = 107°A. The initial and final
time of inflation is denoted as Z; = 10°¢,, and #. = 105%t,,
where the variable ¢, indicates the Planck time ~ 1073

The observational constraint values for free parameters
of the model are expressed in Table.l. In order to consider
the general behavior of the potential during inflation, the
potential is plotted for different values of tensor-to-scalar
ratio, scalar spectra index, and number of e-folds. It is
shown that the potential is always smaller than Planck
energy, and reduces by passing time.

Fig.?7? illustrates the potential behavior in term of scalar
field for three different values of tensor-to-scalar ratio r,
by taking ns = 0.9635, and N = 60. For r = 0.08, related
to Fig.1, the potential has a similar behavior as [15], it in-
crease at first and then start decreasing. During inflation
period, scalar field gets larger when a smaller value for r
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FIG. 1. The potential versus scalar field is displayed for
ns = 0.9635, N = 60 and » = 0.08. Here the variable Vp is
defined by Vp = V(¢)/M,.
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FIG. 2. The potential versus scalar field is displayed for
ns = 0.9635, N = 60 and » = 0.10. Here the variable Vp is
defined by Vp = V(¢)/M,.

is picked out, not to mention the fact that the situation
is opposite for potential so that it goes up by elevation
of r. Additionally, the difference between initial and fi-
nal scalar field becomes bigger by reduction of r. Fig.??
is devoted to depict the potential behavior versus scalar
field for different values of scalar spectra index ng, and
number of e-folds N. Fig.4 portrays the potential behav-
ior for » = 0.12, N = 60, and three different values of
scalar spectra index. It is found that as well as growth
of the potential by downturn of ng, the gap between ¢;
and ¢, rises. Effect of number of e-folds on the potential
behavior is shown in Fig.5. Larger value of N, which
indicates more expansion of the Universe, causes bigger
difference between initial and final value of scalar field.
It could be seen when N grows, inflation happens for big-
ger potential, and inflation ends for bigger value of scalar
field as well. In other word, inflation lasts more in order
to produce higher amount of inflation.

To sum up briefly, it could be said that, the general be-
havior of the potential is same during inflation: it de-
creases by enhancement of scalar field, or by passing time,
and there is almost the same order of initial and final
value of the potential for each cases. It also should be
noticed that the scalar field in all cases above sounds to
be bigger than Planck mass, however its magnitude is
the same order of Planck mass. From Fig.??, it could be
demonstrated that bigger values of r results in smaller
values of ¢ during inflation. Consequently, the scalar
field decreases and it could goes below Planck mass if
bigger value of r is chosen.
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FIG. 3. The potential versus scalar field is displayed for
ns = 0.9635, N = 60 and » = 0.11. Here the variable Vp is
defined by Vp = V(¢)/M,.
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FIG. 4. The potential behavior versus scalar field is plot-

ted for r = 0.12, N = 60, and three different values
of ns as ns = 0.9615(solid line), 0.9625(dashed line), and
0.9635(dotted line).

IV. CONCLUSION

Intermediate inflation was studied in a non-canonical
scalar field model. This type of inflation model takes an
exponential function of time for the universe scale factor

as a(t) = exp (Ato‘), where 0 < a < 1, to describe an

accelerated expansion between power-law and de-Sitter
expansion. Non-canonical scalar field model contains a
modified term of kinetic energy in action, and in this pa-
per it was picked out as a power-law function.

Constraining the free parameters of the model by us-
ing the latest observational data is the main goal of the
work. Doing so, we used observational data about scalar
spectra index, tensor-to-scalar ratio, and scalar pertur-
bation amplitude. The constraint value for a showed
that this parameter is about a ~ 0.6,0.65,0.7. On the
other hand, the obtained constraint for power of kinetic
term gives n =~ 1,1.2,1.5,2, which indicates on the pres-
ence of a non-canonical kinetic energy. By using these
constraint values, tensor spectra index was determined,
and the results shows that the model prediction about
tensor spectra index is in good agreement with obser-
vational data. The other free parameter was A, which
was estimated of order 10?, resulted from scalar pertur-
bation amplitude. The potential behavior and inflation
time were other topic which investigated at next stage.
The potential was plotted for different values of ng, r,
and number of e-folds N. It was shown that the gen-
eral behavior of the potential is same so that the model
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FIG. 5. The potential behavior versus scalar field is plotted
for r = 0.12,ns = 0.9635 and three different value of N as
N = 55(solid line), 60(dashed line), and 65(dotted line). Here
the variable Vp is defined by Vp = V(¢)/M,.

produces a potential that reduces by passing time or in-
creasing scalar field. Studying inflation time came into
this result that inflation starts at about 10738 second af-
ter big bang, and it ends at about 1073° second after big
bang.
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