
Automatic Generation of University Course Timetabling

 Using Genetic Algorithm

M. Ahangarana, H. Pourbozorgb, M. Talebic, K. Soleymanid

a PhD Student of Computer Science, Iran University of Science and Technology

Tel: +98-11-32466121, Email: ahangaran@iust.ac.ir

b, c, d Students of Computer Science, Mazandaran University of Science and Technology

Emails: pourbozorg@ustmb.ac.ir, mtalebi@ustmb.ac.ir, ksoleymani@ustmb.ac.ir

Abstract

University Course Timetabling Problem (UCTP) is a well-

known Constraint Satisfaction Problem (CSP) problem that

has exponential number of solutions based on course

conflicts, teacher’s empty times and other parameters. This

is a NP-Hard problem. Scheduling is a major debate on

planning which can be used in trains scheduling, classroom

scheduling, traffic even in schools and universities. The

Scheduling leads to organizing tasks and removing tasks

interference which is important. The goal of solving UCTP

is setting times for courses and teachers in weekdays in order

to reach minimum courses conflicts. It is also ideal for

teachers to have joint days for teaching in the least weekdays.

Of course, subject to the restrictions of classes and teachers

program this scheduling is very difficult. Generally,

Evolutionary Algorithms (EA) are efficient tools to solve this

problem. The final timetabling must be optimum which means

that there is no conflicts if possible and best scheduling

generate for teachers. In this paper we solve this problem

based on genetic algorithm and implement this algorithm

with DEAP python based toolbox on random dataset. The

implementation results show that genetic algorithm is

efficient tools that can close to the global optimum point.

Keywords: Constraint Satisfaction Problem, Genetic

Algorithm, Optimization, University Course Timetabling

Problem.

1. Introduction

The issue of course timetabling, in principle, includes

allocating lessons per week holding periods and room class.

If conditions such as failure to allocate one class at a time to

several lessons, or lack of time in courses of a teacher are

added to this issue, it becomes clear that the problem of

designing scheduling, can be a constraint satisfaction

problem (CSP). Due to the increasing number of students,

new fields, lack of classrooms, conference rooms,

laboratories and increasing number of courses offered to the

students, we face many limitations, there for designing a time

tables for this problem base on teachers, students and courses

parameters is very difficult .Different methods have been

used to solve these types of issues, some of which include:

Graph coloring algorithm, Use of heuristic functions or

experimental functions, Population-oriented or

developmental methods [1]. In these methods, the

evolutionary ideas and population improvement are used and

a variety of methods in common include application of this

schedule include: Genetic Algorithm, Ant colony algorithm,

Memetic algorithm [2]. The algorithm used in this paper is

genetic algorithm, which is one of the strongest and most

widely used algorithms in search and optimization problems

[3, 4]. One reason for the popularity of the genetic algorithm

is that it does not require a mathematical model of high-level

and advanced one. This algorithm was first introduced by

John Holland based on the Darwin’s evolutionary theory

[5, 6]. Genetic algorithms follow the law of development. To

start, these algorithms need a random primary generation

which is a set of problem answers. Then the answers are

better than before until reaching a global optimum level. In

this process chromosomes those which have higher fitness

transfer to the next generation with higher probability [5, 6].

In this study each chromosome is a university course

timetabling and solve this problem based on genetic

algorithm in terms of features and constraints of the problem

.the rest of paper has organized as follows. In section 2 we

introduce general issues of genetic algorithm. In section 3 we

define the problem of university course timetable. Section 4

is devoted to description of the proposed algorithm. Section

5 concerns numerical experiments and their results were

studied. Finally, section 6 summarizes the paper.

Archive of SID

www.SID.ir

http://www.sid.ir

2. Introduction to Genetic Algorithm

The experience of recent decades shows that genetic

algorithm is one of the strongest methods inspired from the

nature of genetics and natural selection phenomenon, which

is one of the best forms of numerical optimization problems

in science and engineering. This algorithm, with a heuristic

random search, find the most appropriate answers from the

coded information (the chromosomes). The Components of

GA include: Chromosomes and genes, genetic population,

fitness function and genetic operators [6]. Table 1 compares

natural genetic systems and GA [5].

In the genetic algorithm, genetic population (society) there is

the set of chromosomes, the genetic operators are crossover

and mutation, and the quantitative parameters are population

size, the mutation rate and so on. Other components are

explained in Table 1.

Table 1 - Comparing genetic algorithm with natural

Genetic systems.

Natural Genetic systems

Genetic algorithm

Chromosome: Gene

packages that transfer

genetic information from

one generation to another.

Individual: Possible

responses of the issue that

have been encrypted like a

string of numbers.

Environment: the

environmental conditions

of population, which

dictates the manner of

evolution.

Fitness function: Is to

evaluate the quality of a

chromosome that has a

mathematical formula.

The principle of natural

selection: Survive and

proliferation criteria of the

organism is adaptation

with the environment.

Breeding: for each

individual, fitness function

is calculated. According to

the fitness function value,

parents will be selected to

produce new population.

Proliferation: As a result

of the chromosomes

exchange, genetic

information transfer to the

Childs.

Crossover: is a process of

taking more than one

parent solutions and

producing child solutions

from them.

Genetic Mutation:

Replacement of a gene

with another one, in DNA

chain.

Mutation: one bite of

chromosome is selected

randomly and changes.

Reproduction: the

creation of new

generations and evolution.

Reproduction: Repeating

the algorithm to achieve

optimal solution or reach

the termination condition.

2.1 Description of the Genetic Algorithm Flowchart

Genetic algorithm has flowing stages:

1- Creating random population (The initial population)

and evaluation.

2- Parental choice and their combinations to make

children.
3- Selecting members of the population to apply a

mutation and mutation population creation.
 4- The main population integrate the children of the

original population and creating new mutants.
5- If the termination condition is not achieved, we repeat

stage 2.
The general flowchart of genetic algorithm and pseudo

code of typical evolutionary algorithm is shown in figure 1

and figure 2 respectively [9].

Figure 1- The flowchart of Genetic Algorithm

Population

Parents

Offspring

Initialization

Termination Replacement

Selection

Crossover

Mutation

Archive of SID

www.SID.ir

http://www.sid.ir

Figure 2 - Pseudo code of evolutionary algorithms

3. Problem Definition

In this problem we have a set of empty times for each teacher

and list of courses and a series of conflicts between courses

which has display by a graph (conflict graph). In the conflict

graph nodes are as courses and each conflict between two

courses is represented with and edge between related nodes.

In the worst case, if all courses have conflict each other, the

conflict graph is a complete graph with N nodes (N: number

of courses). In this case we know that the number of edge for

a complete graph is:
𝑛∗(𝑛−1)

2

The university course timetabling problem we want to find

and optimum course scheduling in which all conflict are

satisfied, therefore this is and optimization problem. Because

the genetic algorithm is and optimization process, we can use

this algorithm for solving this problem to reach the global

optimum albeit genetic algorithm almost doesn’t reach to the

global optimum, but it can reach to the sub optimal points. In

this problem the sub optimal point is a solution (course

timetabling) that some conflicts are not satisfied. The input-

output diagram of UCTP is shown in figure 3.

Figure 3 - Input – Output diagram of the Course

scheduling model time.

The parameters of this problem are as following:

Inputs: Course Names, Teachers timetable, Courses

conflict.

Output: Optimal Course timetabling.

Parameters:

1. Population size

2. Generations

3. Probability of mutation

4. Probability of crossover

5. Number of teachers

6. Number of courses

4. Our proposed algorithm

In the previous section we introduce UCTP parameters. In

the following we identify the components of our algorithm.

First, a set of teacher’s empty times, list of courses and

courses conflict is given to the algorithm. Then initial

population is randomly produced including a set of courses

timetable. After using parent selection method, a set of

chromosomes are selected and combine them to produce new

generation. Finally, chromosome with maximum fitness is

introduced as the best answer. In the next section we review

the components of our proposed algorithm.

4.1 Components of algorithm

Encoding: For creating individuals, we generate a number

in range [0, 84]. Assume that university is open all days in

week and 12 hours per day (from 8 to 20). Class time will be

Algorithm: Evolutionary algorithm

BEGIN

INITIALISE population

EVALUATION each individual

 REPEAT UNTIL (termination condition)

1. SELECT parents

2. RECOMBINE pairs of parents

3. MUTATE the resulting offspring

4. EVALUATE new individuals

5. SELECT individuals for the next generation

END REPEAT

END

1. Population size

2. Generation

3. Probability of crossover

4. Probability of mutation

5. Elitism factor

Optimal course timetabling

Courses Teacher’s empty times Courses conflict

Archive of SID

www.SID.ir

http://www.sid.ir

in the 84 hours (84=7*12). In this paper the real value is

assigned to each problem parameter at random.

Length of the chromosome: The length of each

chromosome is:

0

p

n

n

c

 , where p is the number of teachers

and cn is the number of courses that n’th teacher can offer.

Fitness: In this step, the following four parameters have

been evaluate by weight -1. This weight shows that our aim

is to maximize the fitness function, therefore we search state

space to find global maximum.

1. Number of times that teacher can be present in the

university.

2. Number of times that teachers have more than one

class at the same time.

3. Number of times that two courses have conflict

each other on the basis of conflict graph.

4. Number of times that two courses are at the same

time.

Breeding: The fitness function for each individual is

calculated and best individuals are selected as parents for

creating next generation.

Selection: For parent selection we used tournament

selection; this method works as follows: Choose some

number of individuals (tournament size) randomly from the

population and copy the best individual from this tournament

group into the population and repeat n times [10]. In this

paper, we figure out “tournament size=4” is suitable value

for this problem.

Crossover: We used uniform crossover in our algorithm; in

this method, each gene in the offspring is created by copying

the corresponding gene from one or the other parent chosen

according to a random generated binary crossover mask of

the same length as the chromosomes. When there is a 1 in

the crossover mask, the gene is copied from the first parent,

and when there is a 0 in the mask the gene is copied from the

second parent. A new crossover mask is randomly generated

for each pair of parents. Therefore offspring contain a

mixture of genes from each parent. The number of effective

crossing point L is not fixed [11]. In this paper, we set this

parameter with “L=0.5” and crossover probability with 1.

Mutation: For mutation, we used shuffle indexes mutation;

in this method, Shuffle the attributes of the input individual

and return the mutant. The P parameter is the probability of

each attribute to be moved. Usually this mutation is applied

on vector of indices. In our implementation, we set “P=0.1”

and mutation probability is 0.1.

Replacement: In the replacement step, we used the

generation update method. In this method, each parent will

be replaced by its child.

Elitism: We used elitism size=1. It means that we keep best

individual in each iteration of generations.

Termination condition: In our algorithm we used the

maximum production method. In this method, after N

generation, algorithm is ended.

5. Simulation Results

For implementation of our propose algorithm we use Python

programming language. We generate random datasets and

apply genetic algorithm functions with Python based DEAP

toolbox. For creating output diagrams we use another Python

based toolbox named Matplotlib.

Distributed Evolutionary Algorithms in Python (DEAP) is an

evolutionary computation framework for rapid prototyping

and testing of ideas [7]. It incorporates the data structures and

tools required to implement most common evolutionary

computation techniques such as genetic algorithm, genetic

programming, evolution strategies, particle swarm

optimization, differential evolution and estimation of

distribution algorithm. It is developed at university Laval

since 2009.

Matplotlib is a plotting library for the Python programming

language and its numerical mathematics extension NumPy

library. It provides an object-oriented API for embedding

plots into applications using general-purpose GUI toolkits

like wxPython, Qt, or GTK+ libraries. There is also a

procedural "pylab" interface based on a state machine (like

OpenGL), designed to closely resemble that of MATLAB,

though its use is discouraged [8]. SciPy library makes use of

matplotlib.

We simulate our proposed algorithm on random generated

datasets with DEAP toolbox. Diagram of fitness changes in

various generations is shown in figure 4. According to this

figure standard deviation of population in each generation is

constant and near to zero. This figure shows that average

fitness increase, and near to the best solution (max diagram).

Therefore the population converge to the global optimum

and best solution is near to the global optimum (fitness=0).

Archive of SID

www.SID.ir

http://www.sid.ir

Figure 4 – Diagram of max, min, mean and standard

deviation of fitness function in different generations.

The parameters value in our simulation are:

Number of generations = 128

Population size = 512

Number of courses = 32

Number of teachers = 32

Number of conflicts set = 16

Probability of courses for each teacher = 0.1

Probability of teacher empty time = 0.5

Probability of courses conflict = 0.1

In the next experiment we change probability of conflicts and

fix other parameters. Figure 5 shows diagram of best fitness

value based on conflict probability values. According to this

diagram, with increasing conflict probability the value of

best fitness decrease because when probability of conflict is

large, algorithm cannot find optimal timetabling.

Figure 5 – Diagram of best fitness based on conflict

probability variations.

The parameters value in this experiment are:

Number of generations = 8

Population size = 8

Number of courses = 32

Number of teachers = 32

Number of conflicts set = 16

Probability of courses for each teacher = 0.1

Probability of teacher empty time = 1

At next step we change probability of courses for teachers

and fix other parameters. Diagram of this experiment is

shown in figure 6. This diagram shows that when teachers

have more empty times then finding course timetabling will

be easier. Therefore we can see that this diagram is ascending

function.

Figure 6 – Diagram of best fitness based on probability of

courses for each teacher.

The parameters value in this experiment are:

Number of generations = 16

Population size =16

Number of courses = 16

Number of teachers = 16

Number of conflicts set = 16

Probability of teacher empty time = 1

Probability of courses conflict = 0.1

In the last experiment we studied behavior of algorithm when

teachers empty times increase. Figure 7 shows diagram of

best fitness based on probability of teacher’s empty times.

This diagram is also an ascending function because with

increasing teacher empty times probability, algorithm can

find better solution.

Archive of SID

www.SID.ir

http://www.sid.ir

Figure 7 – Diagram of best fitness based on teacher empty

times.

The parameters value in this experiment are:

Number of generations = 16

Population size =16

Number of courses = 16

Number of teachers = 16

Number of conflicts set = 16

Probability of courses for each teacher = 0.1

Probability of courses conflict = 0.1

6. Conclusion

In this paper we study University Course Timetabling

Problem based on genetic algorithm. This problem has been

widely studied in literatures but there is no optimal solution

for this problem yet that reach to global optimum. Results

show that solving this type of problems with evolutionary

algorithms is very efficient. Also average evaluation

function on different random datasets in various generations

shows that this algorithm can improve its performance

during iterations of each generation until reach to the sub-

optimal solution. For future works we can improve this

algorithm with another parameters of genetic algorithm such

as different crossover algorithm or use several crossover

methods.

References

[1] Carter M., “A Comprehensive Course Timetabling and

Student Scheduling System at the University of Waterloo”,

Lecture Notes in Computer Science, Vol. 2079, 2001, pp. 64-

82.

[2] Burke E., Elli man D., Wearer R., “A Genetic Algorithm

based University Timetabling System”, Proceedings of the

2nd East-West International Conference on Computer

Technologies in Education, 1994, pp. 35-40.

[3] Russell S., Norvig P., “Artificial Intelligence: A Modern

Approach”, 3rd Edition, 2009, Prentice Hall.

[4] Mitchell M., “An Introduction to Genetic Algorithms”,

Mit press, 1998.

[5] Goldberg D., “Genetic Algorithms in Search,

Optimization and Machine Learning”, Addison-Welsh,

1998.

[6] Whitely D., “A Genetic Algorithm Tutorial”, Journal of

Statistics and Computing Vol. 4, 1994, pp. 65-85.

[7] Fortin, Félix-Antoine, et al. "DEAP: Evolutionary

algorithms made easy." Journal of Machine Learning

Research 13, 2012, pp.2171-2175.

[8] Hunter, John D. "Matplotlib: A 2D graphics

environment." Computing in science and engineering 9, no.

3, 2007, pp. 90-95.

[9] Eiben, Agoston E., James E. Smith. “Introduction to

evolutionary computing.” Vol. 53. Heidelberg: springer,

2003.

[10] Matoušek, Radomil. “Genetic Algorithm and Advanced

Tournament Selection Concept”, Nature Inspired

Cooperative Strategies for Optimization (NICSO 2008). Ed.

Natalio Krasnogor et al. Springer Berlin Heidelberg, 2009.

pp. 189–196. Print. Studies in Computational Intelligence

236.

[11] Sivanandam, S. N., S. N. Deepa, “Introduction to

Genetic Algorithms”, Springer Berlin Heidelberg, 2008.

Archive of SID

www.SID.ir

http://paperpile.com/b/mDdosb/PrAA
http://paperpile.com/b/mDdosb/PrAA
http://www.sid.ir

