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[blank line]

Abstract   

[blank line] 

This paper presents fuzzy lower and upper probabilities for 

the reliability of parallel systems. Attention is restricted to 

parallel systems with exchangeable components. In this 

paper we consider the problem of the evaluation of system 

reliability based on the nonparametric predictive inferential 

(NPI) approach, in which the defining the parameters of 

reliability function as crisp values is not possible and 

parameters of reliability function are described using a 

triangular fuzzy number. Formula of a fuzzy reliability 

function and its α-cut set are presented. The fuzzy reliability 

of structures is defined on the basis of fuzzy number. 

Furthermore, the fuzzy reliability functions of parallel 

systems discussed. Finally, some numerical examples are 

presented to illustrate how to calculate the fuzzy reliability 

function and its α-cut set. In other words, the aim of this 

paper is present a new method titled fuzzy non-parametric 

predictive inference for the reliability of parallel systems. 

[blank line] 

Keywords:   

Parallel Systems, Lower and Upper Probabilities, 

Nonparametric Predictive Inference, Fuzzy Number. 

[blank line] 

[blank line] 

1 Introduction  

[blank line] 

Study on the reliability of the engineering design process is 

an important part of a system in which future performance 

will be evaluated. Since the future cannot be predicted with 

certainty be normal in the calculation of reliability, methods 

are used that allow the modeling of uncertainty  [13] . This 

paper provides a new method for statistical inference about 

system reliability the basis of limited knowledge resulting 

from component testing. This method is called Fuzzy 

Nonparametric Predictive Inference (FNPI). We present 

FNPI for system reliability, in particular FNPI for parallel 

systems.The theory of imprecise probabilities [2, 20], 

Possibility Theory [15], the theory of interval probability 

[21, 22] and fuzzy reliability theory [5] have been used as a 

general and promising tool for reliability analysis  [13.]  

Coolen and Utkin [12] provided an insight into imprecise 

reliability, discussing a variety of issues and reviewing 

suggested applications of imprecise probabilities in 

reliability, see [5, 10, 11, 12, 13] for a detailed overview of 

imprecise reliability and many references. The 

nonparametric predictive approach is a statistical approach 

based on few assumptions about probability distributions, 

with inferences based on data [7]. This method assumes 

exchangeability of random quantities, both related to 

observed data and future observations and uncertainty is 

quantified applying lower and upper probabilities that 

derived from Coolen [8]. Nonparametric predictive 

approach that proposed by Coolen [8] has proved to be 

efficient for measuring the probability of outcomes that 

cannot be done using precise probabilities. Nonparametric 

predictive inference (NPI) is a statistical framework which 

uses few modeling assumptions, with inferences explicitly 

in terms of future observations[7]. NPI is close in nature to 

predictive inference for the low structure stochastic case as 

briefly outlined by Geisser [16], which is in line with many 

earlier nonparametric test methods where the interpretation 
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of the inferences is in terms of confidence intervals. NPI 

provides exactly calibrated frequentist inferences [7], and it 

has strong consistency properties in theory of interval 

probability [1]. NPI is always in line with inferences based 

on empirical distributions, which is a charming 

characteristic when intending at objectivity. 

In recent years, many theoretical aspects and a variety of 

applications of inference based on Hill’s assumption A(n) 

for prediction of probabilities, for one (or more) future 

values, on the basis of n prior observations, have been 

presented, referring to these as ‘Nonparametric Predictive 

Inference’ (NPI), see e.g. [1, 2, 6, 7, 8]. 

This paper aims at studying reliability of parallel systems 

base on non-parametric predictive inference in a fuzzy 

environment. In some cases, it may not be possible to 

define reliability of parallel systems parameters as crisp 

values. In these cases, these parameters can be represented 

by linguistic variables. The fuzzy set theory can be applied 

successfully to cope the vagueness in these linguistic 

expressions for reliability of parallel systems base on 

non-parametric predictive inference. In this paper a new 

method is presented for system reliability. This approach is 

called Fuzzy Non-parametric Predictive Inference (FNPI). 

It provides a new method for statistical inference on system 

reliability on the basis of limited information resulting from 

component testing. Formula of a fuzzy reliability function 

and its α-cut set are presented. The equation of a fuzzy 

reliability function and its α-cut set are determined. The 

fuzzy reliability of structures is described on the basis of 

fuzzy number. Finally, some numerical examples are 

presented to illustrate how to calculate the fuzzy reliability 

function and its α-cut set. In other words, the aim of this 

paper is to propose a new method titled fuzzy 

non-parametric predictive inference for the reliability of 

parallel systems. 

    In Section 2 we review briefly the main idea of NPI and 

Non-parametric Predictive Inference for the reliability of 

parallel systems. The Fuzzy Non-parametric Predictive 

Inference for the reliability of parallel systems is presented 

in Section 3, and finally in section four conclusions and 

discussion are presented. 

[blank line] 

2 Non-parametric Predictive Inference for a 

Parallel System 

 

Hill [17] proposed the assumption ( )nA  for prediction 

about future observations. This assumption was proposed 

particularly for situations in which there is no strong prior 

information about the probability distribution for a random 

quantity of interest. ( )nA does not assume anything else, 

and is a post-data assumption related to exchangeability [7]. 

Hill [18] discusses ( )nA  in detail. Inferences based on 

( )nA  are predictive and nonparametric, and can be 

considered suitable if there is hardly any knowledge about 

the random quantity of interest, other than the n 

observations, or if one does not want to apply such 

knowledge, e.g. to study influences of additional 

assumptions underlying other statistical methods [7]. 
( )nA

is not sufficient to derive precise probabilities for several 

events of interest, but it presents optimal bounds for 

probabilities for all events of interest involving 𝑋𝑛+1 . 

These bounds are lower and upper probabilities in the 

theories of imprecise probability and interval probability, 

and as such they have strong consistency properties. NPI is 

a framework of statistical theory and methods that use these 

( )nA
 

based lower and upper probabilities, and also 

considers several variations of 
( )nA which are suitable for 

different inferences [7]. Augustin and Coolen [1] proved 

that the lower and upper probabilities obtained based only 

on the ( )nA  assumption has strong consistency properties 

in the theory of interval probability [8]. Coolen [6] used 

( )nA  for NPI in case of Bernoulli data, providing interval 

probabilities for the number of successes in m future trials, 

based on the number of successes in n observed trials. This 

was possible by considering the same representation for 

such Bernoulli data as was used by Bayes [3], namely as 

balls on a table [6]. 

The class of k-out-of-m systems, also called ‘voting 

systems’, was introduced by Birnbaum [4]. These are 

systems that consist of m exchangeable ([9]) components 

(often the confusing term identical components is used), 

such that the system functions if and only if at least k of its 

components function. Since the value of m is usually larger 

than the value of k, redundancy is generally built into a 

k-out-of-m system. Both parallel and series systems are 

special cases of the k-out-of-m system. A series system is 

equivalent to an m-out-of-m system while a parallel system 

is equivalent to an 1-out-of-m system [13]. 

    Applications of k-out-of-m systems can e.g. be found 

in the areas of target detection, communication, safety 

monitoring systems, and, particularly, voting systems. The 

k-out-of-m systems are a very common type in 

fault-tolerant systems with redundancy. They have many 

applications in both industrial and military systems. 

Fault-tolerant systems include the multi-display system in a 

cockpit, the multiengine system in an aircraft, and the 

multi-pump system in a hydraulic control system [13]. 

[blank line] 

Definition 1 (The 𝑨(𝒏) assumption of Hill) [8]  

[blank line] 

Assume that 𝑋1 , 𝑋2, … , 𝑋𝑛 , 𝑋𝑛+1  are continuous and 

exchangeable random quantities. Let the ordered observed 

values of 𝑥1 , 𝑥2, … , 𝑥𝑛  be denoted by 𝑥(1) < 𝑥(1), … <

𝑥(𝑛) < ∞, and let 𝑥(0) = −∞ and  𝑥(𝑛+1) = ∞ for ease of 

notation. Assume that the possibility of the existence of a 

nod is zero, and observations specify the real line as 𝑛 + 1 

intervals in the form of 𝐼𝑗 = (𝑥(𝑗−1), 𝑥(𝑗))  for  𝑗 =

1,2, … , 𝑛 + 1. 

For a future observation of 𝑋𝑛+𝑖 based on n observations, 
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assumption 𝐴(𝑛) is written as: 

[blank line] 

       

 

1 ,

1
      1,   1, , 1                            1

1

n i j n i j j
P X I P X x x

for i j n
n

  
  

    


[blank line] 

This assumption implies that the rank of 𝑋𝑛+𝑖 amongst the 

observed  𝑥(1) < 𝑥(2) < ⋯ < 𝑥(𝑛) has equal probability to 

be any value in {1,2, … , n + 1}. 

[blank line] 

Definition 2 (The predictive interval probabilities) [8]  

[blank line] 

Assume that ℬ  is the Borel σ −field on ℝ . For each 

element 𝐵 ∈ ℬ, function sets 𝑃(∙) and 𝑃(∙) for the event 

 𝑋𝑛+1 ∈ ℬ based on the intervals  𝐼1, 𝐼2, … , 𝐼𝑛+1 and the 

assumption 𝐴(𝑛) are defined as: 

[blank line] 

     1

1
       :  ,                           2

1
n jP X B j I B

n
   


[blank line] 

     1

1
         :  .                   3

1
n jP X B j I B

n
   


[blank line] 

Theorem 1  

[blank line] 

Assume a n m  number of Bernoulli’s exchangeable 

experiments whose result can be success or failure. 

Assume: 

[blank line] 

1

n m

nY 

   The random variable of number of successes of 

m Bernoulli’s future (𝑛 + 1 to +𝑚 ) experiments. 

1

nY   The random variable of the number of successes in 

n Bernoulli’s previous (1 to 𝑛) experiments. 

For the sake of simplicity we define (𝑠+𝑟0
𝑠

) = 0, therefore, 

the upper and lower probabilities of non-parametric 

predictive inference are  

[blank line] 

 

 

1 1

1
1

 

1

|

       4

n m n

n t

t s rs r n s m rn m j jj

m s n ssj

P Y R Y s




    




 

      
       
       

[blank line] 

And 

[blank line] 

   1 1 1 1| 1 | (5)n m n n m c n

n t n tY R Y s P Y R Y sP  

      

[blank line] 

Where  t tr ,   ,  rR  1  with            tr r r m   1 2 , 

 t m  1 1  and  c

t t  , ,   ,  m \ RR  1 . 

[blank line] 

Proof. See [6]. 

[blank line] 

Corollary 1  

[blank line] 

Considering a k-out-of-m system, the event 1

n m

nY k

   is 

of interest as this corresponds to successful functioning of a 

k-out-of-m system, following n tests of components that are 

exchangeable with the m components in the system 

considered. Given data consisting of s successes from n 

components tested, the NPI lower and upper probabilities 

for the event that the k-out-of-m system functions 

successfully are also denoted by     : | ,P S m k n s  and 

    : | ,P S m k n s , respectively. For 

 1,2,   ,  mk   and 0 s n   [13] 

[blank line] 

      

 

1 1

1

1

: | , |

                     

1
                    6

1

n m n

n

m

l k

P S m k n s P Y k Y s

n m s k n s m k

m s n s

s l n s m l

s n s







 

  

        
     

    

       
   

   







 

[blank line] 

and 

[blank line] 

    

 

 

 

1 1

1 1

1
1

0

: | ,

|

1 1|

1
1       7

1

n m n

n

n m n

n

k

l

P S m k n s

P Y k Y s

P Y k Y s

n m s l n s m l

m s n s














  

    

           
       

      


 

[blank line] 

Corollary 2 

[blank line] 

For the parallel systems, with k=1, NPI upper and lower 

probabilities can be substantially simplified to give the 

expressions below, which actually provide insight into the 

NPI approach for such systems. Representing 

corresponding lower and upper probabilities for an event 

A  by ( , )( )P P A , the general results above are, for 

parallel system [13]. 

[blank line] 

 

 
1 1

( , ) :1| ,

1
1 , 1   0 8

m m

j j

P P m n s

n s j n s j
for s n

n j n j 

     
     

  
 

[blank line] 
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[blank line] 

3 Fuzzy Non-parametric Predictive Inference 

for the Reliability of k-out-of-m Systems 

[blank line] 

In this Section we consider the problem of the evaluation of 

system reliability based on the nonparametric predictive 

inferential (NPI) approach, in which the defining the 

parameters of reliability function in definite quantities is 

not possible and parameters of reliability function are 

described using a triangular fuzzy number. 

[blank line] 

3.1 Fuzzy Set Theory  

[blank line] 

The theory of sets and fuzzy logic was first proposed by 

Zadeh (1965). This theory has found wide applications in 

many fields such as computer, system analysis, electronic 

and recently in social sciences, economics and industry. 

Fuzzy logic is a theory for uncertain conditions. This theory 

can form many of concepts, variables and systems which 

are imprecise and vague in a mathematical form and 

provide the way for reasoning, control and decision-making 

in uncertain conditions. In popular speech if a variable can 

take a number of terms from the natural language as 

amounts; we call it a linguistic variable. For the formulation 

of terms in mathematical expressions, we use fuzzy sets to 

designate terms. In other words, “if a variable can take 

terms from the natural language as its amounts, then it is 

called a linguistic variable in which terms are specified by 

fuzzy sets domains in which variables have been defined”. 

we recall same concepts of fuzzy set theory used in this 

article derived from (Zadeh, 1965; Zimmermann, 1991) 

[blank line] 

Definition 1 

[blank line] 

The set A  of R is called a fuzzy number if it satisfies in 

the following conditions:  

A is normal i.e.  0 0 ;  1x R A x   . 

A is convex i.e. for each ,   Rx x 1 2  
and each 

λ [  , ] 1
 

we have 

     (λ λ ) min(  ,   )A x x A x A x  1 2 1 21  

A  is the upper semi continuous. 

 [blank line] 

Definition 2 𝜶- cut of fuzzy set 

[blank line] 

The α - cut, αA , consists of elements whose membership 

degree in A  is not lower than α , i. e. 

 | ( ) ,      A x X A x       1  

The α - cut set of a fuzzy number is a closed interval 

which is shown as Aα = ⌊Aα
−, Aα

+⌋ in which  

 α  ;  ( )A inf x R A x      

 α  ;  ( )A sup x R A x      

[blank line] 

The most used fuzzy numbers are the trapezoidal and 

triangular fuzzy numbers. Triangular fuzzy numbers, due to 

their simple computations, are used more. 

[blank line] 

3.2 Fuzzy Number of Success in Tested Components(s) 

[blank line] 

The number of success in tested components can be defined 

by linguistic variables. One of the circumstances that can be 

assumed is when the number of functioning items is defined 

as linguistic variables. Fuzzy numbers can be used for 

showing functioning items. Assume that the number of 

functioning items can be shown as the following triangular 

fuzzy number: 

[blank line] 

1 2 3( ,  ,  )s TFN s s s   
[blank line] 

and  

[blank line] 

  1 2 1 3 2 3( ( )  , ( ) ) s s s s s s s        

[blank line] 

Therefore fuzzy lower non-parametric predictive 

probability,  

[blank line] 

      1 1

1

:1 | , 1| 1
m

n m n

n

j

n s j
P S m n s P Y Y s

n j







 
    




[blank line] 

As a result 

[blank line] 

   
1

1 | 1
m

j

n s j
P s s

n j
  



   
     

  


 

[blank line] 

          ,  l rP P P       

[blank line] 

In a way that,  

[blank line] 

     

1

1 |
m

l

j

n s j
P min s s

n j
 



   
   

  
   

[blank line] 

     

1

1
m

r

j

n s j
P max |s s

n j
 



   
   

  
  

[blank line] 

If s̃ be the triangular fuzzy number then 

[blank line] 
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 
 1 2 1

  

1

(  )
1

m

l

j

n s s s j
P

n j






   
 


  

[blank line] 

 
 3 2 3

  

1

(  )
1

m

r

j

n s s s j
P

n j






   
 


  

[blank line] 

Too fuzzy upper non-parametric predictive probability, 

[blank line] 

      1 1

1

:1 | , 1|

1
1

n m n

n

m

j

S m n s Y Y s

n s j

n j

P P 





  

  
 




  

[blank line] 

As a result 

[blank line] 

   
1

1
1 | 0 1

m

j

n s j
P s s

n j
  



    
     

  
  

[blank line] 

or 

[blank line] 

          , l rP P P   
  

 

[blank line] 

     

1

1
1 |

m

l

j

n s j
min sP s

n j
 



    
   

  
   

[blank line] 

     

1

1
1

m

r

j

n s j
max |s s

n j
P  



    
   

  
  

[blank line] 

If s̃ be the triangular fuzzy number then 

 

[blank line] 

[blank line] 

[blank line] 

 
 1 2 1

  

1

(  ) 1
1

m

l

j

P
n s s s j

n j






    
 


   

[blank line] 

 
 3 2 3

  

1

(  ) 1
1

m

r

j

P
n s s s j

n j






    
 


  

[blank line] 

3.2 Fuzzy Numbers of Tested Components(n) 

[blank line] 

One of the other instances that can be assumed is when the 

number of tested components is defined as linguistic 

variables. Fuzzy numbers can be used for the depiction of 

the number of sample elements. Assume that n numbers of 

tested components are defined as the following triangular 

numbers: 

[blank line] 

1 2 3TFN(n ,  n ,  n )n    
[blank line] 

And 

[blank line] 

     1 2 1 3 2 3(  , ) n n n n n n n        

[blank line] 

So fuzzy lower non-parametric predictive probability 

[blank line] 

      1 1

1

:1 | , 1|

1

n m n

n

m

j

P S m n s P Y Y s

n s j

n j







  

 
 




 

[blank line] 

As a result 

[blank line] 

     
1

1 | ,  0 1
m

j

n s j
P s s n n

n j
   



   
      

  


 [blank line] 

or 

[blank line] 

          ,  l rP P P       

[blank line] 

       

1

1 | , 
m

l

j

n s j
P min s s n n

n j
  



   
    

  


 [blank line] 

       

1

1 , 
m

r

j

n s j
P max |s s n n

n j
  



   
    

  


[blank line] 

If s̃ and 𝑛̃ be the triangular fuzzy numbers then 

[blank line] 

 
   

 
1 2 1 1 2 1

  

1 1 2 1

( ) (  )
1

( )

m

l

j

n n n s s s j
P

n n n j

 




     
 

  


 

[blank line] 

 
   

 
1 2 1 3 2 3

  

1 3 2 3

( ) (  )
1

( )

m

r

j

n n n s s s j
P

n n n j

 




     
 

  


 

[blank line] 

Too fuzzy upper non-parametric predictive probability, 

[blank line] 

      1 1

1

:1 | , 1|

1
1

n m n

n

m

j

P S m n s Y Y s

n s j

n j

P 





  

  
 




 

[blank line] 
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     
1

1
1 | , 

0 1

m

j

n s j
s sP n n

n j
  





    
    

  

 



 

[blank line] 

or 

[blank line] 

          , l rP P P   
  

 

[blank line] 

       

1

1
1 | , 

m

l

j

n s j
min s s n n

n j
P   



    
    

  


[blank line] 

       

1

1
1 , 

m

r

j

n s j
max |s s n n

n j
P   



    
    

  


 [blank line] 

If s̃ and 𝑛̃ be the triangular fuzzy numbers then 

 

[blank line] 

 
   

 
1 2 1 1 2 1

  

1 1 2 1

( ) (  ) 1
1

( )

m

l

j

n n n s s s j

n n n j
P

 




      
 

  


  

[blank line] 

 
   

 
1 2 1 3 2 3

  

1 1 2 1

( ) (  ) 1
1

( )

m

r

j

n n n s s s j

n n n j
P

 




      
 

  


[blank line] 

3.3 Numerical Examples 

[blank line] 

Example 1 

[blank line] 

Consider a parallel system with 5 exchangeable 

components (so m=5), and the only information available is 

the result of a test of 4 components, also exchangeable with 

the 5 to be used in the system. Assume that the numbers of 

successes in the tests are expressed as “Approximately 2”. 

Triangular fuzzy numbers are more suitable to convert this 

definition into a fuzzy number. The number of successes in 

the tests to be converted to a triangular fuzzy number as

 TFN  1,2,3s  . The FNPI lower and upper 

probabilities for successful functioning of the system are 

[blank line] 

 TFN  1,2,3s   

[blank line] 

   1  ,3s        

 

[blank line] 

   
1

5 4
| 1

4j

s j
P s s

j
  



   
    

  
  

[blank line] 

or 

[blank line] 

          ,  l rP P P       

[blank line] 

   
5

  

1

4
1 |

4
l

j

s j
P min s s

j
 



   
   

  
   

[blank line] 

   
5

  

1

4
1

4
r

j

s j
P max |s s

j
 



   
   

  
  

 [blank line] 

   
5

1

4 1
1 | 0 1

4j

s j
s s

j
P   



    
     

  
  

[blank line] 

or 

          , l rP P P   
  

 

[blank line] 

   
5

  

1

4 1
1 |

4
l

j

s j
min s s

j
P  



    
   

  
   

[blank line] 

   
5

  

1

4 1
1

4
r

j

s j
max |s s

j
P  



    
   

  
  

[blank line] 

Table (1) and (2) shows α-cuts related to P̃ fuzzy lower 

non-parametric predictive probability and P̅̃ fuzzy upper 

non-parametric predictive probability and Figures (1) and 

(2) show diagrams corresponding membership function.  

[blank line] 

Table 1 - α- cuts  related to  P   fuzzy lower  

non-parametr ic  pred ic t ive probabi l i ty .  

     lP      rP        lP      rP   

0 0.5556 0.9524 0.55 0.7341 0.9010 

0.05 0.5749 0.9488 0.60 0.7470 0.8948 

0.10 0.5935 0.9451 0.65 0.7593 0.8882 

0.15 0.6115 0.9411 0.70 0.7712 0.8814 

0.20 0.6289 0.9370 0.75 0.7827 0.8743 

0.25 0.6456 0.9326 0.80 0.7937 0.8668 

0.30 0.6618 0.9279 0.85 0.8042 0.8590 

0.35 0.6774 0.9231 0.90 0.8143 0.8508 

0.40 0.6924 0.9179 0.95 0.8240 0.8422 

0.45 0.7068 0.9126 1 0.8333 0.8333 
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0.50 0.7207 0.9069  ----  ----  ---- 

[blank line] 

 
Figure 1 - the d iagram of  membership function of  

lower  non-parametr ic  p redic t ive  probabil i ty.  

[blank line] 

Table 2 - α- cuts related  to P fuzzy upper  

non-parametr ic  pred ic t ive probabi l i ty.  

     lP      rP        lP      rP   

0 0.8333 0.9921 0.55 0.9126 0.9766 

0.05 0.8422 0.9911 0.60 0.9179 0.9745 

0.10 0.8508 0.9901 0.65 0.9231 0.9723 

0.15 0.8590 0.9890 0.70 0.9279 0.9699 

0.20 0.8668 0.9878 0.75 0.9326 0.9674 

0.25 0.8743 0.9865 0.80 0.9370 0.9647 

0.30 0.8814 0.9851 0.85 0.9411 0.9619 

0.35 0.8882 0.9836 0.90 0.9451 0.9589 

0.40 0.8948 0.9820 0.95 0.9488 0.9557 

0.45 0.9010 0.9803 1 0.9524 0.9524 

0.50 0.9069 0.9785  ----  ---- ----  

[blank line] 

 
Figure 2 - the d iagram of  membership function of  

upper  non-parametr ic  p redic t ive  probabil i ty  

[blank line] 

Example 2  

[blank line] 

Consider  a  para l lel  sys t em wi th 5  exchangeable 

components  (so  m=5) ,  and the  only informat ion 

avai lable i s  the resul t  o f a  tes t  of  

“Approximately 4”  components,  a l so 

exchangeable  wi th the 5  to  be used in the  sys tem.  

Assume tha t  the numbers o f successes in t he 

tests  are expressed as “Approximate ly 2”.  

Triangular  fuzzy numbers are more suitable to  

convert  th is  def ini t ion into  a  fuzzy number.  The  

number o f  components  to  be  conver ted  to  a  

tr iangular  fuzzy number as  
 TFN  3,4,5n 

and  

The number o f suc cesses in the tests  to  be  

converted to  a  tr iangular  fuzzy number  as  

 TFN  1,2,3s 
.  The FNPI lower and upper  

probabil i t ies for  successful  functioning of the  

sys tem are  

[blank line] 

 TFN  3,4,5n 
 

[blank line] 

 TFN  1,2,3s 
 

[blank line] 

   3  ,5n     
  

[blank line] 

   1  ,3s     
  

[blank line] 

     
5

1

1 | ,  0 1
j

n s j
P s s n n

n j
   



   
      

  


[blank line] 

or  

[blank line] 

          ,  l rP P P       
[blank line] 

     
5

  

1

1 | , l

j

n s j
P min s s n n

n j
  



   
    

  


[blank line] 

     
5

  

1

1 , r

j

n s j
P max |s s n n

n j
  



   
    

  


[blank line] 

Too fuzzy upper  non -parametr ic  predic t ive  

probabil i ty,  

[blank line] 

     
5

1

1
1 | ,  0 1

j

n s j
s sP n n

n j
   



    
      

  


[blank line] 

or  

[blank line] 

          , l rP P P   
    

[blank line] 
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     
5

  

1

1
1 | , l

j

n s j
min s s n n

n j
P   



    
    

  


[blank line] 

     
5

  

1

1
1 , r

j

n s j
max |s s n n

n j
P   



    
    

  


[blank line] 

Table (3) and (4) shows 𝛼-cuts related to  P fuzzy lower 

non-parametric predictive probability and P  fuzzy upper 

non-parametric predictive probability and Figures (1) and 

(2) show diagrams corresponding membership function.  

[blank line] 

Table 3:  α- cuts related  to  P  fuzzy lower  

non-parametr ic  pred ic t ive p robabi l i ty.  

     lP 
 

   rP 
 

     lP 
 

   rP 
 

0  0 .6250 0.9167 0.55  0.7640 0.8795 

0.05  0.6411 0.9139 0.60  0.7732 0.8752 

0.10  0.6565 0.9111 0.65  0.7820 0.8707 

0.15  0.6710 0.9081 0.70  0.7904 0.8661 

0.20  0.6848 0.9050 0.75  0.7984 0.8612 

0.25  0.6979 0.9018 0.80  0.8061 0.8561 

0.30  0.7103 0.8985 0.85  0.8134 0.8508 

0.35  0.7222 0.8950 0.90  0.8203 0.8452 

0.40  0.7334 0.8913 0.95  0.8270 0.8394 

0.45  0.7441 0.8876 1 0 .8333 0.8333 

0.50  0.7543 0.8836  - - - -   - - - -   - - - -  

[blank line] 

 
Figure (3)  the diagram of membership  funct ion 

of lower non-parametr ic  predic t ive probabil i ty  

[blank line] 

Table 4:  α- cuts rela ted  to P fuzzy upper  

non-parametr ic  pred ic t ive probabi l i ty.  

     lP 
 

   rP 
 

     lP 
 

   rP 
 

0  0 .8929 0.9762 0.55  0.9326 0.9656 

0.05  0.8975 0.9754 0.60  0.9352 0.9643 

0.10  0.9018 0.9746 0.65  0.9377 0.9631 

0.15  0.9060 0.9737 0.70  0.9401 0.9617 

0.20  0.9099 0.9729 0.75  0.9424 0.9603 

0.25  0.9137 0.9719 0.80  0.9446 0.9589 

0.30  0.9172 0.9710 0.85  0.9467 0.9574 

0.35  0.9206 0.9700 0.90  0.9487 0.9558 

0.40  0.9238 0.9690 0.95  0.9506 0.9541 

0.45  0.9269 0.9679 1 0 .9524 0.9524 

0.50  0.9298 0.9667  - - - -   - - - -   - - - -  

[blank line] 

 
[blank line] 

Figure (4)  the diagram of membership  funct ion 

of upper  non-parametr ic  predic t ive probabil i ty  

[blank line] 

4 Conclusions  

[blank line] 

Despite of the usefulness of reliability of parallel systems 

base of nonparametric predictive approach, it has a main 

difficulty in defining its parameters as crisp values. 

Sometimes it is easier to define these parameters by using 

linguistic variables. For these cases, the fuzzy set theory is 

the most suitable tool to analyze reliability of parallel 

systems base of nonparametric predictive approach. The 

obtained results show that the fuzzy definitions of 

parameters provide more flexibility and more usability. In 

this article the non- parametric predictive probability has 

been analyzed for reliability of parallel systems with fuzzy 

parameters. We have shown that when the definition of 

lower and upper predictive probability parameters is not 

possible as crisp values, and when defining the parameters 

of number of success in tested components and number of 

tested components as crisp values is not possible, these 

parameters can be expressed in linguistic terms, and the 

fuzzy set theory can be used successfully to overcome 

ambiguity in such expressions in the form of non- 

parametric predictive reliability of parallel systems. We also 

calculate the fuzzy reliability function and its α-cut set.  

[blank line] 
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