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Abstract   

 

Environmental stress screening program, which is used in 

development phase of manufacturing, causes decrease or 

even elimination of hidden faults of products before 

competency tests. This can lead to significant improvement 

in product reliability and decrease in maintenance costs. 

During environmental stress screening test, the product is 

exposed to a certain environmental conditions such as 

temperature, humidity and vibration in a certain level for 

some amount of times. The exposure time is a very 

important parameter that should be determined accurately 

using statistical methods. The aim of this paper is to 

calculate the optimal exposure time for an environmental 

stress screening process using Weibull distribution which 

has wide applications in reliability analysis. A case study of 

electronic sets is then applied to illustrate the process step 

by step. After determination of Weibull parameters, 

obtained results and charts are used to calculate the time 

parameter of screening test for the components. 
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Introduction  

The aim of screening electronic sets is actually to accelerate 

burnout of sets and make them reach to their useful life 

before customer delivery [1]. For many mechanical and 

electronic components, the failure rate function has a 

bathtub shape [2]. It is well-known that, because of design 

and manufacturing problems, the failure rate is high at the 

beginning of a product life cycle and decreases toward a 

constant level. After reaching a certain age, the product 

enters the wear-out phase and the failure rate starts to 

increase [3]. Despite the fact that this phenomenon has been 

presented in many reliability engineering texts, few 

practical models possessing this property have appeared in 

the literature [2]. In most of the previous studies, only a part 

of the bathtub curve is considered at any one time. Another 

common fact is that most engineers may be interested only 

in a part of the lifetime, because at component level, they 

only see one part of the failure rate function. However, it 

will be helpful to have a model that is reasonably simple 

and good for the whole product life cycle for making 

overall decisions. Furthermore, for tcomplex systems, both 

the decreasing and increasing parts of the failure rate fall 

into the ordinary product lifetime [2]. The idea is based on 

the conventional Weibull distribution which is widely used 

by reliability engineers today [2-4]. In practice, Weibull 

distributions have been shown to be very flexible in 

modeling various types of lifetime distributions and they 

have been used to model any of the three parts in a 

bathtub-curve [5-7]. The two-parameter version has the 

following form: 

 
(1) 

Where η is called the scale parameter and β is called the 

shape parameter. The failure rate function that corresponds 

to (1) is given by. 

 
(2) 

It can be seen that when β<1, the failure rate function is 

decreasing and when β > 1, it is increasing. In the case of 
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β=1, we have the well-known exponential distribution 

which has a constant failure rate. Because of these 

interesting properties, Weibull distribution has been widely 

used for modeling different phases of lifetime [6, 8]. It is 

our intention in this paper to study some practical models 

for the bathtub-shaped failure rate function and to determine 

time parameters for screening test. The integration of 

screening process with robust statistical methods will 

facilitate the discovery of defects, ultimately improving the 

sensitivity and specificity of the screening process. 

In this paper, drawing probability plot method is applied to 

determine Weibull parameters accurately. This method is 

the most proper one to show Weibull function's variety and 

functionality [7, 9]. To this order, at first essential process 

steps for determination of Weibull parameters will be 

explained. Then, actual failure behavior has employed to 

determine shape and life characteristic parameters of the 

Weibull function empirically. Then, using accurate Weibull 

parameters, the Weibull hazard rate function can be 

calculated. ultimately, obtained results and charts are used 

to determine the time parameter of screening test for an 

environmental stress screening process of electronic sets. 

 
Fig. 1: Bathtub-curve 

Parameter Estimation for Weibull Distribution 

Weibull distribution has especial wide applications in 

reliability analysis. The reason for this matter is that 

determination of parameters for this distribution allows us 

to fit proper models of failure distribution in every span of 

life for a wide range of parts and products [4, 8, 10]. 

Weibull three- parameter probability density function 

generally is as follows: 

(3) 

 
Three-parameter Weibull hazard rate function generally is 

as follow: 

(4) 
   

Three-parameters Weibull reliability function is as follow: 

(5) 
 

In which the parameters used in every three above equations 

are as follows: 

 β: Shape parameter 

 η: Scale parameter (Life characteristic) 

 t0: Minimum Life 

 t: Time 

Three-parameter Weibull distribution will turn into 

two-parameter one when it used during infant mortality 

period. As electronic sets generally has no minimum 

lifetime, thus for these sets . Consequently, by 

in above equations, we will have two-parameter 

Weibull functions where its probability density function 

generally is as follow: 

(6) 

 
Two-parameter Weibull hazard rate function generally is as 

follow: 

(7) 
 

Two-parameter Weibull reliability function is as follow: 

(8) 
 

As , Then by replacing it in Eq (8) we have: 

(9) 
 

The values of parameters β and η will be calculated via 

analyzing the results of screening process. There are three 

types of sets at the end of screening process: Passed 

(approved) sets, failed sets, and suspended sets. A 

suspended set is a non-corrupted set which its screening 

time will end before other members of the non-corrupted 

society. If screening of all of sets of society starts in a same 

time and finishes in a same time, there would be no 

suspended set [11, 12]. 

Extracted data of screening process includes part number, 

sample size, approval status, and elapsed time to fail. When 

a set is approved while its elapsed time is less than a failed 

set, it is considered a suspended one. When a set is under a 

test series, there is the possibility of choosing the number of 

loops leading to at least one successful pass. When a set is 

not able to have a successful pass, maybe it has failed 

before beginning the screen. These sets may follow 

different distributions. As products can have different 

behavior patterns and nature, thus different screening times 

and screening types are anticipated. In screening process, 

the extracted part number will apply to distinguish and 

classify data for Weibull analysis [12]. 

In Weibull analysis, outcome data of screening process will 

be transformed in a way that makes it capable to fit Weibull 

distribution on them. If successful, values of parameters β 

and η are calculated. By replacing these values in Weibull 

hazard rate function there is now a mathematical statement 

to explain the failure behavior. Now, screening process time 

is computable using a specific slope or a great value of 

hazard rate curve. After calculating the screening time, 

confidence limits of 90 percent can provide a range of 

certainty in prediction of screening time [7]. Surely analysis 

of the greater number of failed units concludes to prediction 

of screen time with higher certainty [13]. 

Steps to Determine Optimal Screening Time 

In order to determine optimal screening time we have to 
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follow thirteen steps which are described in detail in the 

following subsections respectively. Also data related to the 

case study of electronic sets is also calculated for each step 

[1, 9, 14]. 

Step1. In order to fit Weibull distribution, data should be 

collected from screened sets. In ideal situation, in order to 

achieve maximum accuracy in determination of Weibull 

distribution parameters, sample number must be greater 

than 31. Otherwise accuracy will reduce. 

Step2. Samples include information as: Failed (F), passed 

(P), suspended (S), failure or suspension time, completed 

loops of the test and sample size [9]. Those points of the 

sets which have not passed even one successful loop of 

screening process loop series will be excluded and have no 

role in calculation of time parameter of screening process. 

The reason for this matter is that the failure distribution for 

these points is distinctively different from other sets of the 

society. These sets probably were defective before entering 

the screening process. These data from failed sets will be 

applied in ranking of all failed sets. 

Step3. Failure and suspension data must be sorted 

ascending according to time then numerically reverse from 

up to down (by integers). The first number for reverse 

ranking is sample size. Samples in current study are shown 

at Table1. In this example, sample size is equal to 200. 

Table 1: Ranked data 

Set 
reverse 
ranking 

Loops 
Time 
(hour) 

Failed/ 
Suspended 

A 200 0 0 F 

B 199 0 0 F 

C 198 1 0.2 F 

D 197 2 0.8 F 

E 196 3 1 S 

F 195 6 1.3 F 

G 194 11 2.1 F 

H 193 24 5.8 F 

I 192 25 7 S 

J 191 40 8.9 F 

K 190 69 12.7 F 
 

 

Step4. Rank order numbers are considered only for failed 

sets. This ranking also includes sets which have failed in 

t=0 or their loop number is zero. Eq(10) shows the 

mathematical statement to rank order increment: 

 

(10)  

Rank order number is calculated as follows: 

(11)  

By combining Eq (10) and (11) we will have: 

(12) 
 

In which i, RRi and RNi-1 are defined as follows: 

i : a specific failed set which starts from the failed set with 

highest reverse rank number. In this example the highest 

reverse rank number (200) is related to set A. 

RRi: Reverse rank number for sets which their ranking will 

be calculated 

RNi-1: For the first considered set this variable is equal to 

zero. The reason is that there is no previous ranking order 

number. 

Also, sample sizes include failed or suspended samples. 

For sets "A" to "D" as there are no suspended data between 

them, increments are equal to 1. Ranking order numbers for 

sets A, B, C and D are 1, 2, 3, 4 respectively. As sets "E" 

and "J" have been suspended, thus they won't have rank 

order numbers. The set "F" would have a decimal rank 

order number since there are suspended sets between it and 

the next early failure. The rank order number for set "F" is 

calculated as below: 

 

Data of Table1 with all rank order values are shown in Table 

2. 

Table 2: Sample data with rank order values 

Set 
reverse 

ranking 

Rank 

order 

number 

Loops 
Time 

(hour) 

Failed/ 

Suspended 

A 200 1 0 0 F 

B 199 2 0 0 F 

C 198 3 1 0.2 F 

D 197 4 2 0.8 F 

E 196 - 3 1 S 

F 195 5.0051 6 1.3 F 

G 194 6.0102 11 2.1 F 

H 193 7.0153 24 5.8 F 

I 192 - 25 7 S 

Archive of SID

www.SID.ir

http://www.sid.ir


J 191 8.0256 40 8.9 F 

K 190 9.0359 69 12.7 F 

 

Step5. In this step, for all of failed sets, median rank values 

will be added to Table2. An approximation for median rank 

values can be calculated as follow: 

(13) 
 

In which  is the rank order number for the set which its 

median rank is calculated. Also sample size includes failed 

or suspended samples. So median rank value for "E" is 

calculated as follow:  

 

All median rank values of data in table2 is shown in Table3: 

Table 3. sample data with median rank values 

Set 
reverse 

ranking 

Rank 

order 

number 

Median 

rank Loops 
Time 

(hour) 

Failed/ 

Suspended 

A 200 1 0.0035 0 0 F 

B 199 2 0.0085 0 0 F 

C 198 3 0.0135 1 0.2 F 

D 197 4 0.0185 2 0.8 F 

E 196 - - 3 1 S 

F 195 5.0051 0.0235 6 1.3 F 

G 194 6.0102 0.0285 11 2.1 F 

H 193 7.0153 0.0335 24 5.8 F 

I 192 - - 25 7 S 

J 191 8.0256 0.0386 40 8.9 F 

K 190 9.0359 0.0436 69 12.7 F 
 

Step6. In this step, 90% confidence limit band for median 

rank values is considered. This confidence band is consisted 

with a 5% lower confidence limit and a 95% upper 

confidence limit. Eqs (14) and (15) calculate the 5% and 

95% confidence limits for non-decimal rank order numbers 

respectively. If there is a decimal rank order number, then 

the confidence limits will be calculated by interpolation of 

nearest upper and lower integer numbers. In this case study, 

the rank order number of "5.0051" is a result of 

interpolation of 5.0000 and 6.0000.  

For 5% confidence limit we have: 

(14) 

 

And for 95% confidence limit we have: 

(15) 

 

 : Rank order number (integer) 

  : Number of set of samples 

 :Value of  when the area of distribution 

function is α at the right side of  

 :The right side area of F value 

  : Numerator degree of freedom 

 : Denominator degree of freedom 

We have distribution function of "F" as follows: 

(16) 
 

  : Independent variable in function 

 :Gamma function  

 

(17) 
 

Gamma function for integer operands: 

(18) 
 

When combining Eqs.(17) and (18) we have: 

 

(19) 

 

By integrating Eq. (19) in range of 0 to , the area of "F" 

distribution curve is calculated.  is the value that 

specifies the result of 95% integration. This integration 

calculates the left side area of . Due to integration 

complexity, we use numerical techniques (Trapezoidal 

method) to solve the following statement: 

(20) 

 

As an example, 5% and 95% confidence limits for set "B" 

we have:  

  : sample size 

 :Rank order number for set "B"  
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For set "F" (Rank order number=5.0051), we interpolate 

between "5" and "6". Then, 5% and 95% confidence limits 

for rank order numbers 5 and 6 is shown in Table4. 

Table 4. Interpolation limits 

 
Rank order number of 5 Rank order number of 6 

5% 0.0099 0.0131 

95% 0.0453 0.0519 
 

For a simple linear interpolation between two points, Eq. 

(21) is applied as follow: 

(21) 
 

Using above information, for 5% limit we have: 

 

 
Using Eq (21) we have: 

 

 
Interpolated 5% confidence limit for rank order number 

"5.0051" we have: 

99 %             

Using above information, for 95% limit we have: 

 

 

Using Eq (21): 

 

 

Interpolated 95% confidence limit for rank order number 

"5.0051" is calculated as follow: 

 
 

Table5 shows data of Table3 with all 5% and 95% 

confidence limit values. Unnecessary information has been 

removed. 

Table 5. Sample data with 5% and 95% confidence limits 

Set 
Median 

rank 
  

 
Loops 

Time 

(hour) 

Failed/ 

Suspended 

A 0.0035 0.0003 0.0154 0 0 F 

B 0.0085 0.0018 0.0263 0 0 F 

C 0.0135 0.0041 0.0313 1 0.2 F 

D 0.0185 0.0069 0.0385 2 0.8 F 

E - - - 3 1 S 

F 0.0235 0.0099 0.0453 6 1.3 F 

G 0.0285 0.0131 0.052 11 2.1 F 

H 0.0335 0.0166 0.0585 24 5.8 F 

I - - - 25 7 S 

J 0.0386 0.0201 0.0649 40 8.9 F 

K 0.0436 0.0237 0.0716 69 12.7 F 

 

Step7. In order to smooth data and determine whether 

sample data fit Weibull distribution or not, it is better to 

convert data obtained from samples and Weibull reliability 

function in a way that makes converted data be drawn in a 

straight line form. Since Weibull reliability function is a 

quadratic exponential function, it is necessary to get inverse 

logarithm from both sides of the equation twice in order to 

linearize it. Using the main function we have: 

 
(22) 

After simplifying the above statement we will have: 

 

(23)  
 

 :Median rank values 

 : Time 

 : Shape parameter ( It should calculated from failure data)  

 : Characteristic's life ( It should calculated from failure 

data) 

Also, we use below equations to convert median rank, time 

and confidence limits before depiction as follows: 

 

(24) 

 (25) 

 

(26) 

 

(27) 

In which: 

 

 :Median rank  

  : time to fail  

 : 5% confidence limit 

 :95% confidence limit 

Sample data after conversion are shown at Table 6. 

Unnecessary columns have been removed. In addition, 

failure data for t=0 and zero loop or suspended will not be 

used in Weibull depiction. Hence, conversions for these 

cases have not been done. 
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Table 6. Sample and converted data 

S

et 

Media

n rank 
Y   

 

 
 

Loo

ps  

Time 

(hou

r) 

A 0.0035 - 0.0003 - 0.0154 - 0 - 0 

B 0.0085 - 0.0018 - 0.0263 - 0 - 0 

C 
0.0135 -4.

289 
0.0041 

-5.49

5 
0.0313 

-3.44

8 
1 

-1.

61 
0.2 

D 
0.0185 -3.

981 
0.0069 

-4.97

3 
0.0385 

-3.23

8 
2 

-0.

22 
0.8 

E - - - - - - 3 - 1 

F 
0.0235 -3.

739 
0.0099 -4.61 0.0453 

-3.07

1 
6 

0.2

6 
1.3 

G 
0.0285 -3.

543 
0.0131 

-4.32

9 
0.052 -2.93 11 

0.7

4 
2.1 

H 
0.0335 -3.

379 
0.0166 -4.09 0.0585 

-2.80

9 
24 

1.7

6 
5.8 

I - - - - - - 25 - 7 

J 
0.0386 -3.

235 
0.0201 

-3.89

7 
0.0649 

-2.70

2 
40 

2.1

9 
8.9 

K 
0.0436 -3.1

1 
0.0237 -3.73 0.0716 -2.6 69 

2.5

4 
12.7 

 

Step8. The best line fit for median rank points (when time 

and loop are greater than zero) will be determined using 

linear regression (Least squares method) [15]. Resulted line 

has a familiar shape as below: 

 (28) 

In which the values of A and B are calculated as follows: 

 

(29) 

 

(30) 

In which:  

  : allocated number to the data point 

  : X value for data points (i= 1 to n) 

  : Y value for data points (i= 1 to n) 

Data points for linear regression and the total data for linear 

regression are presented in Tables 7 and 8 respectively. 

Table 7. Data points for linear regression 

   

1 -1.61 -4.289 

2 -0.22 -3.981 

3 0.26 -3.739 

4 0.74 -3.543 

5 1.76 -3.379 

6 2.19 -3.235 

7 2.54 -3.11 

 
Table 8. Total data for linear regression 

     

1 -1.61 -4.289 6.9198 2.5921 

2 -0.22 -3.981 0.8758 0.0484 

3 0.26 -3.739 -0.9721 0.0676 

4 0.74 -3.543 -2.6218 0.5476 

5 1.76 -3.379 -5.947 3.0976 

6 2.19 -3.235 -7.0847 4.7661 

7 2.54 -3.11 -7.8994 6.4516 

 
5.66 -25.285 -16.7294 17.601 

 

 
Accordingly: 

  
After applying linear regression to depict confidence limits, 

new X values can be calculated using Y values. To this 

order, the linear regression for x variable must be solved as 

follow: 

 
Step9. Using linear regression statement, in order to depict 

data on a chart, a new set of points will be added to the table 

of data values. The values of X & Y (  ) are used 

to calculate another set of X values ( ) which helps us to 

draw the regression line on the chart. These data and the 

other data which are necessary to draw the cart are 

represented in Tables 9 and 10 respectively. 

Table 9. new data points to draw regression line 

Set 
  

A - - 

B - - 

C -4.289 -1.596 

D -3.981 -0.484 

E - - 

F -3.739 0.365 

G -3.543 1.053 

H -3.379 1.628 
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I - - 

I -3.235 2.133 

J -3.11 2.572 

Table 10. Necessary data to draw 

 

  

  

61/1- 596/1- 298/4- 495/5- 448/3- 

22/0- 484/0- 981/3- 973/4- 238/3- 

26/0 365/0 739/3- 61/4- 071/3- 

74/0 053/1 543/3- 329/4- 93/2- 

76/1 628/1 379/3- 09/4- 809/2- 

19/2 133/2 235/3- 897/3- 702/2- 

54/2 572/2 11/3- 73/3- 6/2- 

The columns of Table 10 which are used to draw Weibull 

graph are given in Tabe11. In general, Weibull graph has the 

following parts: 

 A set of points 

 A regression line 

 Upper confidence limit curve 

 Lower confidence limit curve 

Weibull graph with all of the above mentioned parts is 

presented in Fig. 2. 

Table 11. Needed X & Y columns 

 
X axis Y axis 

Set of points 
  

Regression line 
  

Upper 

confidence limit   

Lowe confidence 

limit   

 
Fig. 1: Weibull graph 

When data points are close to regression line, it is possible 

to describe data behavior using Weibull distribution. 

Confidence limits demonstrate the accuracy of estimation 

according to drawn points. The more drawn data points give 

the closer confidence limits for regression line. There are 

two ways in application of confidence limits. The first 

application is to calculate the range for expected failure 

percentage in a specific time. To this order, a vertical line 

which cuts off "ln (time)" axis and confidence limit curves 

must be drawn. Then horizontal lines from each of 

intersection points with confidence limit curves to the "y" 

axis must be drawn. Now there are two resulted "y" values. 

Using Eq. (25) these values must be converted to median 

rank values. 

Rank percentages (  & ) indicate that 

for a specific screening time with 90% confidence limit, the 

society failure percentage will happen between  

and . 

The second application of confidence limits is to calculate 

ranges for expected time of a specific failure percentage. To 

do so, horizontal line must be drawn in a way that cuts off 

the cumulative failure percentage (converted 

by ) and both confidence limit curves. Then 

vertical line must be drawn from each of the intersection 

points of confidence limit curves to "x" axis. Using Eq. (26) 

these values are converted to time values. 

 

(32)  
   

  : the value on "x" axis where vertical line has intersected 

it 

: screening time 

Time values ( & ) indicate that the failure 

percentage with 90% confidence will happen in range of 

 and . 

(31)  

  : the value on "y" axis where horizontal line has 

intersected it.  

 : cumulative failures 
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Step10. In this step using linear regression the values of 

&  can be calculated according to following steps: 

According to the previous steps, the values of A and B in 

the linear regression is calculated as follow: 

 

   ،  

Also the converted Weibull function is as follow: 

 (33) 

By comparing above statement with linear regression, it is 

concluded that: 

 
(34) 

So, the value of  is calculated using the above statement. 

At the other hand, the parameter of  or life criterion is 

equivalent to the condition in which F(t) = 0.632 that means 

63.2% of society fail to operate. Since  

and , Then R(t) can be calculated as 

follow: 

 
By replacing above statement in Eq (33): 

 

 
After solving the above equation for , we will have: 

 
(35) 

Using linear regression statement, the values of X, t and 

finally  can be calculated as follows: 

 
As we have the following relationship between X and t: 

 

 
Therefore the value of  is calculated as follow: 

 

Step11. After calculation of  and , Weibull hazard rate 

function can be obtained with accuracy. Then, Weibull 

hazard rate function is used to create a set of points to draw 

Weibull hazard function as below. 

 
(36) 

In hazard rate function, horizontal axis (x) is over time and 

vertical axis (y) is over momentary hazard rate (h(t)). We 

will not assess the hazard rate values when t=0. Data which 

are used to draw Weibull hazard function and finally hazard 

rate chart are given in Table 12 and Fig 3 respectively. 

Table 12. Data points to draw Weibull hazard rate 

Set Time (hour) 
 

A - - 

B - - 

C 2/0 019303/0 

D 8/0 007164/0 

E 1 006107/0 

F 3/1 005063/0 

G ½ 003593/0 

H 8/5 001738/0 

I 7 001519/0 

J 9/8 001279/0 

K 7/12 000992/0 

 

 
Fig. 2: hazard rate chart 

Step12. In this step Weibull hazard rate is used in order to 

calculate the time of screening in a screening process. There 

are two methods to calculate the screen time. The first 

method is based on using the mean time between failure 

values of products (MTBF). MTBF is actually the converse 

of the hazard rate which is modeled by Weibull function 

when the shape parameter is equal to 1. The end of 

screening is when the descending exponential statement of 

hazard rate function ( ) intersects with a horizontal line 

describing 1/MTBF. This method can lead to a long and 

unreasonable screening time. 

The other method considers the end of screening time that is 

a moment in which the slope of hazard rate curve inclines to 

a small negative number. This small number indicates that 

the hazard rate remains constant approximately. The smaller 

negative number concludes the longer screening time. 

Generally, values which are equal or less than "-0.00005" 

are used as small negative number for slope of curve. 

Finally, in order to find the proper screening time for a 

specific hazard rate, differential of the hazard rate statement 

must be taken and solved over the time. To this order, 

hazard rate function is given as follows: 

 
(37) 

The differential of the hazard rate function is calculated as 

follow: 

 
 

(38) 
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After solving the differential of hazard rate function over 

time, the following statement is obtained: 

 

(39) 

In which: 

 Constant (shape parameter calculated from failure data) 

 Constant ( life characteristic calculated from failure 

data) 

  : of hazard rate ( a small negative number) 

  : Screening time 

Finally, using the above statement for t, the optimal 

screening time for sample data in the presented case study 

can be calculated as follow: 

 

(40) 

 

 

Step13. A very complicated and accurate method to 

determine the screening time is Bayesian analysis [16-18]. 

Exerting Bayesian analysis, failure probability assessment 

for weak subpopulation and main population will be used to 

find the cumulative failure percentage which has been 

demolished at that population. This percentage value after 

conversion will be replaced in regression formula in order 

to determine the proper screening time. 

Weak subpopulation parameters are  as shape parameter 

and  as characteristic life (derived from Weibull 

analysis). Main population parameters are  as shape 

parameter for constant hazard rate of "-1" and  as mean 

time to failure (MTTF) which is considered 100000 hours. 

Weak population failure probability "i" is as follow: 

(41) 

 
In which there are the following statements: 

(42) 
 

(43) 

 
In which: 

 : time left to failure of a member in the failed society. 

By combination of three above equations, we have: 

On the other hand, Subpopulation ratio is given as follow: 

(45) 
 

By combination of Eqs (44) and (45), following statement is 

obtained: 

(46) 

 
Where: 

 Sample size ( approved, rejected, and suspended units) 

: sample proportion of weak subpopulation 

: Shape parameter calculated from Weibull analysis 

: Characteristic life calculated from Weibull analysis 

  : shape parameter for constant hazard rate of 1 

: Product MTTF = 100000 hours 

 : time left to the failure of a member in failed society 

The numerical values of  ،  and  for different failure 

times are given in Table13. 

Table 13. Median rank for Bayesian analysis 

Failure 
time 

  

 

0 0 0 1 

0 0 0 1 

0.2 0.019043 0.00001 0.999475 

0.8 0.007021 0.00001 0.998578 

1 0.004947 0.00001 0.997983 

1.3 0.003499 0.00001 0.99715 

2.1 0.001677 0.00001 0.994072 

5.8 0.001229 0.00001 0.991929 

7 0.00944 0.00001 0.989572 

Conclusion  

Wibull distribution function is able to simulate the failure 

behavior during a routine mission or under accelerated 

conditions effectively. In this paper, drawing probability 

plot method is applied to determine Weibull parameters 

accurately. This method is the most proper one to show 

Weibull function's variety and functionality. To this order, 

actual failure behavior is applied to determine shape and life 

characteristic parameters of Weibull function empirically. 

After determination of Weibull parameters, the hazard rate 

function is obtained. Ultimately, using this hazard function, 

the optimal exposure time for an environmental stress 

screening process is calculated. Moreover, a case study of 

electronic sets is applied to prove each step of the process. 

For further investigation, using other statistical distributions 

like lognormal distribution and also considering more 

practical conditions in calculating the failure rate of 

components can be interesting subjects for researchers.  

 

(44) 

 

Archive of SID

www.SID.ir

http://www.sid.ir


References 

1. Deeks, J.J., Systematic reviews of evaluations of 

diagnostic and screening tests. BMJ: British 

Medical Journal, 2001. 323(7305): p. 157. 

2. Xie, M. and C.D. Lai, Reliability analysis using an 

additive Weibull model with bathtub-shaped failure 

rate function. Reliability Engineering & System 

Safety, 1996. 52(1): p. 87-93. 

3. Kapur, K. and L. Lamberson, Reliability in 

Engineering Design John Wiley & Sons. Inc., New 

York, 1977. 

4. Carrasco, J.M., E.M. Ortega, and G.M. Cordeiro, A 

generalized modified Weibull distribution for 

lifetime modeling. Computational Statistics & Data 

Analysis, 2008. 53(2): p. 450-462. 

5. Lindgren, T. Optimizing ESS Effectiveness using 

Weibull Techniques. in Institute of Environmental 

Sciences Proceedings. 1986. 

6. Bebbington, M., C.-D. Lai, and R. Zitikis, A 

flexible Weibull extension. Reliability Engineering 

& System Safety, 2007. 92(6): p. 719-726. 

7. Meeker, W.Q. and L.A. Escobar, Statistical 

methods for reliability data. 2014: John Wiley & 

Sons. 

8. Seguro, J. and T. Lambert, Modern estimation of 

the parameters of the Weibull wind speed 

distribution for wind energy analysis. Journal of 

Wind Engineering and Industrial Aerodynamics, 

2000. 85(1): p. 75-84. 

9. Malo, N., et al., Statistical practice in 

high-throughput screening data analysis. Nature 

biotechnology, 2006. 24(2): p. 167-175. 

10. Carrasco, J.M.F., E.M.M. Ortega, and G.M. 

Cordeiro, A generalized modified Weibull 

distribution for lifetime modeling. Computational 

Statistics & Data Analysis, 2008. 53(2): p. 

450-462. 

11. Montgomery, D.C., Introduction to statistical 

quality control. 2007: John Wiley & Sons. 

12. O'connor, P.D., P. O'Connor, and A. Kleyner, 

Practical reliability engineering. 2012: John Wiley 

& Sons. 

13. Kincaid, D.R. and E.W. Cheney, Numerical 

analysis: mathematics of scientific computing. Vol. 

2. 2002: American Mathematical Soc. 

14. Shahani, A. and D. Crease, Towards models of 

screening for early detection of disease. Advances 

in Applied Probability, 1977. 9(04): p. 665-680. 

15. Kleinbaum, D., et al., Applied regression analysis 

and other multivariable methods. 2013: Nelson 

Education. 

16. Gelman, A., et al., Bayesian data analysis. Vol. 2. 

2014: Chapman & Hall/CRC Boca Raton, FL, 

USA. 

17. Berzuini, C. and D. Clayton, Bayesian analysis of 

survival on multiple time scales. Statistics in 

medicine, 1994. 13(8): p. 823-838. 

18. Rogers, D., R.D. Brown, and M. Hahn, Using 

extended-connectivity fingerprints with 

Laplacian-modified Bayesian analysis in 

high-throughput screening follow-up. Journal of 

biomolecular screening, 2005. 10(7): p. 682-686. 

 

 

Archive of SID

www.SID.ir

http://www.sid.ir

