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Abstract   

  

In recent decades, flexible manufacturing systems have 

emerged as a response to market demands of high product 

diversity. Scheduling is one important phase in production 

planning in all manufacturing systems. Although scheduling 

in classical manufacturing systems, such as flow and job 

shops, are well studied. Rarely, any paper studies 

scheduling of the more recent flexible manufacturing system. 

This paper investigates scheduling in the flexible 

manufacturing systems where there are both machine and 

routing flexibilities. In the first step, two mathematical 

models in form of mixed integer linear programs are 

proposed for the problem. The first model is position-based 

and the second is sequence-based. The models can solve 

optimally small problems. In the second step, since the 

problem is NP-hard, we develop an efficient genetic 

algorithm for large scale problems, using the properties of 

the optimal schedule. Finally, we carry out computational 

experiments to demonstrate the effectiveness of our 

algorithm. The results show that the proposed algorithm 

has the ability to achieve the good solutions in reasonable 

computational time. 
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Introduction   
  

Nowadays, due to competitive market conditions, 

organizations need to increase their production efficiency 

and optimize operations. Therefore, in order to optimize 

their schedule and to online respond, organizations must 

consider different factors to the demands of customers. 

With integrated planning systems, organizations can 

quickly respond to changes and produce higher quality 

products and lower production costs. Each process can be 

optimized and complex problems modeled in engineering, 

economic and commercial for optimization problems. 

Today, FMSs seem to be a very promising technology as 

they provide flexibility, which is essential for many 

manufacturing companies to stay competitive in a highly 

dynamic and changing manufacturing environment. The 

optimal scheduling of FMS is a critical issue and it is a 

complex problem. Flexible manufacturing systems (FMSs) 

have been developed to combine the flexibility of job shops 

and the productivity of flow lines. Scheduling in FMSs 

differs from that in a conventional job shop because of the 

availability of alternating manufacturing resources resulting 

in routing flexibility. This may potentially increase the 

output by eliminating the bottle-necks often present when 

alternate routes are not feasible. FMS is a highly integrated 

manufacturing system and the inter-relationships between 

its various components are not well understood for a very 

complex system. Some of optimization problems are 

complex and obtain optimal solutions in a reasonable time 

with the exact solution such as dynamic programming and 

branch and bound methods is difficult. So the development 

of these types of problems that can be solved in reasonable 

time optimal or acquire near-optimal solutions are suitable 

economically. In recent years, researchers in optimizing the 

most complex problems by implementation of meta 

heuristic methods have achieved good results.  Due to this 

complexity, it is difficult to accurately calculate the 

performance measures of the FMS which leads to its design 

through mathematical techniques. Various combination of 

objectives can be considered for scheduling problem of an 

FMS. Flexible manufacturing systems have been developed 

to combine the flexibility of open shops and the 

productivity of job shops. A flexible manufacturing system 

(FMS) are includes a set of n jobs and a set of m machine.  

Each job consists of a chain of operations, each of which 

needs to be processed during an immediately on a given 

machine. Each machine can process at most one operation 
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at a time. 

This paper focuses on a new scheduling approach based on 

genetic can be used to complement the currently used 

computer-based scheduling systems. The proposed 

algorithm is based on two assumptions: first, each machine 

is eligible to process operation. Second, the number of 

operations that assigned to each machine is eligible to 

process. For modeling this problem, two mathematical 

models have been proposed: The first model is 

position-based. The second model is sequence-based.  

 

Literature review   
  

In the literature, different algorithms such as Simulated 

Annealing, Artificial Immune System, Particle Swarm 

Optimization (PSO), Petri Net, Tabu Search, Branch and 

Bound and integer programming have been used to solve 

the FMS scheduling problem. Researchers always have 

been intrigued by the scheduling problem in FMS system 

because of its importance in today’s manufacturing industry. 

Over the past 10 to 15 years, most research on the 

scheduling of FMSs has focused on developing scheduling 

algorithms for a single objective such as minimization of 

total tardiness and maximization of throughput, and so on. 

The present work, however, considers multi-objective 

functions in the development of the scheduler to utilize 

resources maximally, thereby offsetting the high installation 

cost of equipment. Thus the multiple objectives must be 

achieved to satisfy both customers and the FMS company. 

The first mathematical formulation for FMS-loading 

problem was given by Stecke [1]. He formulated the 

production planning problem as non-linear 0–1 mixed 

integer programs and applied several linear methods on the 

data from an existing FMS. Udhayakumar, and Kumanan 

presented an integrated scheduling of flexible 

manufacturing system with different priority dispatching 

rules using evolutionary algorithms [2]. Jerald et al. solved 

a scheduling optimization of flexible manufacturing 

systems using particle swarm optimization algorithm. The 

FMS scheduling problem has been tackled by various 

traditional optimization techniques. While these methods 

can give an optimal solution to small-scale problems, they 

are often inefficient when applied to larger-scale problems. 

In this work, different scheduling mechanisms are designed 

to generate optimum scheduling; these include 

non-traditional approaches such as genetic algorithm (GA), 

simulated annealing (SA) algorithm, memetic algorithm 

(MA) and particle swarm algorithm (PSA) by considering 

multiple objectives, i.e., minimizing the idle time of the 

machine and minimizing the total penalty cost for not 

meeting the deadline concurrently [3]. 

Reddy and Rao presented a hybrid multi-objective GA for 

simultaneous scheduling of machines and AGVs in FMS 

[4]. Huang and Liao presented an ant colony optimization 

combined with taboo search for the job shop scheduling 

problem [5]. In other research, Fauadi and Murata solved 

makespan minimization of machines and automated guided 

vehicles schedule using binary particle swarm optimization 

[6]. Baruw and Piera [7]. Some research using a genetic 

algorithm to solve the FMS scheduling problem. Zakaria 

and Petrovic [8] proposed a genetic algorithm for match-up 

rescheduling with non-reshuffle and reshuffle strategies 

which accommodate new orders by manipulating the 

available idle times on machines and by sequencing 

operations, respectively. Kumar et al. [9] presented a new 

integrated approach to concurrently address the machine 

loading and the tool allocation problems in an FMS 

environment. Candan and Yazgan [10] Studied on Genetic 

algorithm parameter optimization using Taguchi method for 

a flexible manufacturing system scheduling problem. Also, 

the another research using genetic algorithm was studied by 

Wu et al. [11], Soolaki and Zarrinpoor [12], Abazari et al. 

[13], Filho et al. [14] and Umar et al. [15].  

Priore et al. presented a comparison of machine-learning 

algorithms for dynamic scheduling of flexible 

manufacturing systems [16]. Noorul Haq et al. [17] 

discussed the multilevel scheduling decisions of a FMS to 

generate realistic schedules for the efficient operation of the 

FMS. Abdelmaguid et al. [18] has presented a new hybrid 

genetic algorithm for the simultaneous scheduling problem 

for the makespan minimization objective. 

 

Problem formulation   
  

In this paper, the flexible manufacturing systems (FMS) 

have been investigated by considering the following 

assumptions: first, each machine is eligible to process 

operation. Second, the number of operations that assigned 

to each machine is eligible to process. 

Two mathematical models have been proposed for this 

problem. The first model is position-based. The second 

model is sequence-based. This problem has the ability to 

achieve the optimum for small problems. These problems 

are first formulated as a mixed integer linear programming 

model. Using these models, small instances are solved for 

optimality. 
 

Parameters and indices: 

 The number of jobs 

 The number of machine 

 Index for jobs   

 operations of job   

 Index for machines  

 positions in machine  

 
The number of operations of job j. 

 
A parameter that takes value 1 if machine i is eligible 

to process operation l, and 0 otherwise. 

 
The processing time of operation l of job j on 

machine .  

 
The number of operations that machine i is eligible to 

process. 

M A large positive number  
 

Model 1 (position-based) 

In this model, binary variables specify the operations' 

position in both processing route of a job and job order of a 

machine; so, it is called position-based model. The 
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following notations are established: 

 

Variables: 

 
Binary variable taking value 1 if Oj,l is processed 

in position k of machine i, and 0 otherwise.  

 
Binary variable taking value 1 if Oj,l is processed 

immediately after Oj,b, and 0 otherwise. 

 
Continuous variable for the completion time of 

Oj,l. 

Min  

Subject to: 

   

   

   

   

   

   

  
 

  
 

  

  

  

where the . 
 

Constraint set (1) states that every operation in each 

positions of a machine is scheduled once. Constraint set (2) 

ensure that every operation must have at most one 

succeeding operation in processing route of the jobs and in 

job order of every machine and positions. Constraint sets 

(3) enforce that a job can be assigned to a machine in each 

positions that this machine is eligible to process operation. 

Constraint set (4) and (5) states that all operations 

processed must done immediately after another operation. 

Constraint set (6) enforce that dummy job 0 and operation 0 

must have exactly one successor. Constraint set (7) ensures 

that Ojl cannot start before Ojb completes if Ojb precedes Ojl. 

Constraint set (8) assures that Ojl begins only after Ohb 

finishes if Ojl occupies a position after Ohb. Constraint set 

(9) computes makespan. Constraint (10) indicates that 

continuous variable for the completion time of Ojl should be 

available for scheduling at time zero. Constraint sets (11) 

define the decision variables. 
 

Model 2 (Sequence-based) 

Model 2 uses binary variables that show the relative 

sequence of different operations of a job as well as the 

relative order of the jobs on each machine. The following 

notations are established: 
 

Variables: 

 
Binary variable taking value 1 if Oj,l is 

processed after Oh,b, and 0 otherwise. j < 

n, h > j 

 
Binary variable taking value 1 if Oj,l is 

processed after Oj,b, and 0 otherwise. l < 

m, b > l 

 
Binary variable taking value 1 if Oj,l is 

processed on machine i. 

 
Continuous variable for the completion 

time of Oj,l. 

Min  

Subject to: 

  

 

 

  

 

 

 

 

 
 

Constraint set (1) states that every machine must perform 

an operation in each time. Constraint sets (2) enforce that a 

machine can only perform the operations that have eligible 

to process this operation. Constraint set (3) ensures that Ojl 

cannot start before Ojb completes if Ojb precedes Ojl. Also, 

Constraint set (4) ensures that Ojb cannot start before Ojl 

completes if Ojl precedes Ojb. Constraint set (5) assures that 

Ojl begins only after Ohb finishes if Ojl occupies a position 

after Ohb. Also, Constraint set (6) assures that Ohb begins 

only after Ojl finishes if Ohb occupies a position after Ojl. 

Constraint set (7) computes makespan. Constraint (8) 

indicates that continuous variable for the completion time 

of Ojl should be available for scheduling at time zero. 

Constraint sets (9) define the decision variables. 

 

Designing the proposed algorithm (solution 

method)   
  

The GA was developed by John Holland and students in the 

1970s. Apart from traditional optimization methods, a code 

format instead of a parameter set is employed in the GA 

[10]. The GA works according to the rules of probability 

and requires only an objective function. The algorithm 

searches a specific part of the solution rather than an entire 

solution [15, 26]. 

Thus, a solution is expected to be attained in a much shorter 

time [27]. The GA can be applied to attaining the solution 

of large problems which have a large number of factors 

affecting a solution space. At any given iteration, the 

genetic algorithm operates on a pool of solutions rather than 

a single solution. In GA, search starts with an initial set of 

random solutions known as population [9, 28, 29]. In this 

Archive of SID

www.SID.ir

http://www.sid.ir


 

 

study, a metaheuristic genetic algorithm (GA) technique 

commonly used as a stochastic search method in recent 

years was employed and an appropriate schedule was 

obtained to assigning operations to machines and 

sequencing operations assigned to each machine. The 

objective of the problem was to minimize the makespan 

(Cmax) of an FMS scheduling problem. 

 

 

Chromosome representation  

 

In general, the process of encoding solutions includes two 

steps: In the first phase, operations allocated to machines. 

Then, in the second phase, the operation sequencing is 

determined. For this reason, two-dimensional chromosome 

is defined that the first dimensional are includes the 

machines vector and the second dimensional are includes 

the operation sequencing vector.  

For example, there are four jobs that two operations must 

be done on each jobs. There are two machines to perform 

each operation. So one of the possible solutions to the 

following: 

a: [2 2 2 1 1 1 2 1] 

h: [7 3 5 4 6 1 8 2] 

This solution show that the seventh operations are done on 

the second machine. Next, the third operations are done on 

the second machine. Next, the fifth operations are done on 

the second machine. Then, the fourth operations are done 

on the first machine. Next, the Sixth operations are done on 

the first machine. Next, the first operations are done on the 

first machine. Then, the eighth operations are done on the 

second machine. Finally, the second operations are done on 

the first machine. 

 

Initial population 
 

This process starts with initializing a population. It means 

that a population of initial solutions is randomly generated 

over the problem space. The fitness of the weeds initialized 

is evaluated depending upon the fitness function or the 

objective function chosen for the optimization problem. 

This section consists of 2 stages: 

1. allocating operations to machines: At this stage, 

randomly selecting an operation from virtual operations 

for the processing. 

2. operation sequencing: To create a feasible initial solution 

to the problem, first, all operations have been put on the 

list of unplanned operations. Also, for each of them, a 

unique random number in the interval [0, 1] is generated.  

A population of initial solutions is randomly generated over 

the problem space. The fitness of the weeds initialized is 

evaluated depending upon the fitness function or the 

objective function chosen for the optimization problem. 

 

Selection and reproduction  

 

The selection creates an opportunity to deliver the gene of a 

good obtained solution to the next generation. In this paper, 

the roulette wheel selection is utilized where chromosome 

selection in mating pool is based on their probability 

selection. The probability selection of each chromosome is 

evaluated based on its fitness value. 

 

Crossover operator  

 

Crossover exchanges some of genes of the chromosomes 

through the breakage and reunion of two selected 

chromosomes in order to generate a number of children. A 

predetermined parameter pCrossover=0.8 is used to 

represent the probability of crossover operator applied in a 

population. The arithmetic crossover is utilized for this 

purpose. The formula for calculating the number of 

operator is as follows:  

nCrossover=round(pCrossover*nPop/2)*2 

 

Mutation operator 
 

Mutation operator makes an offspring solution by randomly 

modifying the parent’s features. This operator helps to 

generate a reasonable level of diversity in the population. It 

also serves the search by jumping out of local optimal 

solutions. In this research, an exchange mutation is chosen. 

This mutation swaps value of the two random selected 

genes of current solution together. A predetermined 

parameter pMutation=0.3 is used to represent the 

probability of mutation operator applied in a population. 

This operator is implemented in each section of the 

chromosome. The search process of the algorithm stops if 

the number of generations is greater than a maximum 

number of generations or some specified number of 

generations without improvement of best-known solution is 

reached. The formula for calculating the number of operator 

is as follows:  

nMutation=round(pMutation*nPop) 

 

Evaluation and validation of results   
  

Because the innovation of this research is in both the model 

and the solution method, Therefore, the computational data 

analysis to determine the validity of the model and 

determine the efficiency of solution will be undertaken. In 

section (5.1), the validity of the proposed model using 

numerical examples in compact size and compare answers 

with the exact solution is shown. 

In section (5.2), to demonstrate the ability of the algorithm 

in convergence to the optimal solution, we use the exact 

solution in numerical examples with small size. Also, to 

demonstrate the speed and quality of the algorithm, we use 

the numerical examples with medium and large size. 

We used GAMS 22.2 to calculate the exact solution of the 

problem. In addition, to implement the proposed genetic 

algorithm MATLAB R 2011is used. 

 

Validation of the proposed model 
 

In this section, the validity of the proposed model using 

numerical examples in compact size and compare answers 

with the exact solution is shown. 
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Consider four job that each job must be performed with two 

operations. Two machines can do these operations. Each job 

can be performed by one machine at a time. Each machine 

at a time can perform only one operation.  

In the table 1, the process time of each operation on each 

machines for all jobs shown. 

 

 

 

Table 1. Numerical example problem in small size  

Jobs 

Machine 1 Machine 2 

Operation 

1 

Operation 

2 

Operation 

1 

Operation 

2 

Job 1 2 3 4 5 

Job 2 - 1 4 - 

Job 3 2 6 3 - 

Job 4 - 1 4 6 

The goal is to find the best production scheduling so that 

each operation of jobs is done and the time of all operations 

minimized. Using commonality counting, the optimal 

solution is: Cmax=13 that this Gantt chart is shown below: 

 
Fig 1. Optimal scheduling gnat chart of numerical example 

 

Validation of the proposed algorithm and analysis the 

results 

 

To evaluate the efficiency of the algorithm, 40 problems in 

large size, medium and small were produced. Given that 

genetic algorithms basically are random algorithms, 

therefore, this algorithm was run 10 times for each problem 

and the best solution obtained was considered as a final 

solution of problem. 

In order to increase the quality of proposed algorithm 

solutions, the most suitable parameter values by numerical 

experiments obtained that shown in Table 2 below: 

 

Table 2. The most appropriate algorithm parameters 

parameters 

Value 

small 

size 

medium 

size 

large 

size 

Crossover rate (nCrossover) 0.8 0.8 0.85 

Mutation rate (nMutation) 0.3 0.3 0.25 

Population size (nPop) 15 15 20 

Number of generations 

(MaxIt) 
200 300 400 

Tournament Selection Size 3 3 3 

 
Comparing the proposed algorithm with GAMS in 

terms of solutions quality 
 

Obtained solutions in different dimensions are shown in 

table 3. The purpose of comparing two solutions is 

evaluating the ability of the proposed algorithm to achieve 

the optimal or near-optimal solutions. 

 

Table 3. The information of GAMS and Proposed Algorithm in different dimensions 

Sample Size 
GA 

(Cmax) 

GA 

(CPU Time) 

GAMS 

(Cmax) 

GAMS 

(CPU Time) 

1 m=5, m=5, O=5 18 5.2031 18 23.2 

2 m=5, m=5, O=5 15 5.1719 15 21.8 

3 m=5, m=5, O=5 13 5.1875 13 24.3 

4 m=5, m=5, O=5 18 5.0313 16 25.4 

5 m=5, m=5, O=5 17 5 16 26.1 

6 m=10, m=5, O=5 26 10.4219 - - 

7 m=10, m=5, O=5 29 10.0469 - - 

8 m=10, m=5, O=5 19 10.0938 - - 

9 m=10, m=5, O=5 30 10.4688 - - 

10 m=10, m=5, O=5 30 10.6563 - - 

11 m=15, m=5, O=5 39 15.1094 - - 

12 m=15, m=5, O=5 41 15.7344 - - 

13 m=15, m=5, O=5 30 15.9531 - - 

14 m=15, m=5, O=5 33 15.2344 - - 

15 m=15, m=5, O=5 33 16.5313 - - 

16 m=20, m=5, O=5 44 21.0625 - - 

17 m=20, m=5, O=5 45 21.3125 - - 
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18 m=20, m=5, O=5 53 20.8281 - - 

19 m=20, m=5, O=5 48 21.1875 - - 

20 m=20, m=5, O=5 45 20.4063 - - 

21 m=5, m=10, O=10 20 5.5313 - - 

22 m=5, m=10, O=10 25 5.2031 - - 

23 m=5, m=10, O=10 24 5.2813 - - 

24 m=5, m=10, O=10 24 5.4219 - - 

25 m=5, m=10, O=10 23 5 - - 

26 m=10, m=10, O=10 20 5.1719 - - 

27 m=10, m=10, O=10 23 5.2656 - - 

28 m=10, m=10, O=10 23 5.6719 - - 

29 m=10, m=10, O=10 22 5.3594 - - 

30 m=10, m=10, O=10 22 5.5938 - - 

31 m=15, m=10, O=10 33 15.8125 - - 

32 m=15, m=10, O=10 32 16.9375 - - 

33 m=15, m=10, O=10 28 16.7188 - - 

34 m=15, m=10, O=10 30 16.3125 - - 

35 m=15, m=10, O=10 33 17 - - 

36 m=20, m=10, O=10 34 20.9688 - - 

37 m=20, m=10, O=10 34 23.9063 - - 

38 m=20, m=10, O=10 35 20.4531 - - 

39 m=20, m=10, O=10 37 20.2813 - - 

40 m=20, m=10, O=10 36 21.0469 - - 

 

Conclusion and future work   
  

This paper, proposes a new methodology, constraint-based 

genetic algorithm (CBGA) to handle a complex variety of 

variables and constraints in a typical FMS-loading problem. 

The primary objective in this research was to develop a 

methodology that minimizes the manufacturing makespan 

within a FMS environment, while reducing the time that is 

required to develop and produce a realistic production 

schedule. To achieve this aim, three new genetic 

operators—constraint based: initialization, crossover, and 

mutation are introduced. The methodology developed here 

helps avoid getting trapped at local minima. In this paper, 

the flexible manufacturing systems (FMS) have been 

investigated by considering the following assumptions: first, 

each machine is eligible to process operation. Second, the 

number of operations that assigned to each machine is 

eligible to process. Two mathematical models have been 

proposed for this problem. The first model is position-based. 

The second model is sequence-based. This problem has the 

ability to achieve the optimum for small problems. These 

problems are first formulated as a mixed integer linear 

programming model. Using these models, small instances 

are solved for optimality. 

The application of the algorithm is tested on standard data 

sets and its superiority is demonstrated. The solution 

approach is illustrated by a simple example and the 

robustness of the algorithm is tested on 40 problems in 

large size, medium and small were produced. Given that  

 

 

genetic algorithms basically are random algorithms, 

therefore, this algorithm was run 10 times for each problem  

and the best solution obtained was considered as a final 

solution of problem. Finally, the most effective factors and 

their levels were employed in the proposed GA to compare 

against the problem from the literature. The results showed 

that the proposed GA algorithm produces better result than 

the others. 
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