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Abstract  

  

This research, considers a flow shop manufacture line which 

has unrelated parallel machines at each stage. Machines 

numerically can vary in each stage and all machines are not 

able to process all parts. Each part must be assigned only to 

one machine in each stage and parts should not be waiting 

at machines (no buffer). Materials loading, transportation, 

unloading and packing are done by robots. In other words, 

transportation is done by Automated Guided Vehicles (AGV) 

and all tasks of parts (loading, unloading, packing and setup) 

on machines are done by Robotic Adaptive Grippers. It is not 

obligatory for one kind of parts to be processed on one 

machine. In other words, parts can be divided into parts 

families (Lot Split). The main contribution of this study is 

devising a mixed integer linear model which will be 

examined in an examples using GAMS software. 
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1. Introduction  
  

Technology-dependent advance caused emergence of the 

automatic devices in processing, inspecting and transporting 

fleet which play key roles in minimizing not only the overall 

cost, but also in total time. Hence, to meet the goals, a 

systematic plan must be adopted to employ the robot 

capability. In many assembly and manufacture factories, type 

and sequence of operations are equal for all products and 

parts. Therefore, all parts should pass the identical route to 

end up the process. This sequence of machines is referred as 

flow shop (FS). However, traditional flow shop could be 

applied in low capacity factories and this is why the hybrid 

flow shop (HFS) introduced. As a matter of fact, in the hybrid 

flow shop within each stage the number of machines can 

surpass one, parts backward movement is not allowed and 

machines are placed parallel which can be related / unrelated. 

Due to the fact that the hybrid flow shop system needs be 

completely accurate to avoid any mistakes in scheduling, 

robots are proposed as the best solution. Robotic equipment 

in this system can not only undertake the transportation, but 

also perform machine setup, loading and unloading. Robotic 

manufacturing environment can tremendously decrease 

manpower costs, increasing accuracy and lowering 

contamination in manufacturing. Moreover, robots have 

capability of working in harsh environments which are to 

some extent hard for human being. 

In this study, we introduce an Integer linear mathematical 

model that is rather dissimilar to the hybrid flow shop classic 

model. In the following section we are going to mention our 

model general characteristics. firstly, we included 

transportation calculation accurately in this model which is a 

very striking factor in simulating real situation. Secondly, lot 

splitting (parts families) occurs. In other words, parts family 

takes place where identical parts can be divided into separate 

identities or different parts with similar process, so we put 

them in same parts family and it is noticeable that there is no 

setup time among processing sequence of parts from same 

family. Thirdly, travel rounds are allocated to AGVs which 

will be specified by the management of the factory 

(maximum number of travels permitted to each AGV). 

Fourthly, parts cannot be waiting at machines before and 

after being processed (no buffer). The objective is finding 

optimal makespan and optimum number of travels 

(minimizing travels time). To better understand the model’s 

function, we provide an examples and solve that with GAMS 

software using CPLEX solver. 

The HFS problems mostly are NP-hard. For example, a 

production line with two stages is considered even in the case 

of one stage involves two machines and the other one 

contains only a machine, it is NP-hard which is proved by 

Gupta and Tunc [1]. In another variant of HFS, Hunsucker 
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and Shah [2] considered that system is permitted to cease the 

operations on parts before their completions occurred in 

order to resume them on different time frame which in turn 

identically strongly is NP-hard even with two machines. 

Nonetheless, Engin and Doyen [3] showed that with some 

specific properties and priority connections, the problem 

may be polynomially solvable. 

As other variants, there are several researches that have been 

done on the hybrid flow shop. Hurink and Knust [4] assumed 

an unrestricted buffer space and negligible empty moving 

times in flow shop scheduling with transportation problem. 

Engin et al. [5] minimized the makespan in the hybrid flow 

shop scheduling with multiprocessor task (HFSMIT) 

problem which is NP-hard and they introduced an efficient 

Genetic Algorithm to solve it. Pan and Haung [6] minimized 

the make span with consideration of no-wait job shop 

scheduling problems. They introduced NP-hard problem 

which is solved by a hybrid genetic algorithm. Marichelvam 

et al. [7] showed the multistage hybrid flow shop (HFS) 

problem and proved it is NP-hard. In the Study done by 

Soukhal et al. [8] it has been shown that even in condition of 

two machines with transportation and blocking, the problem 

is strongly NP-hard. Kashyrskikh et al. [9] studied on two-

machine flow shop sequencing problem with minimum 

makespan criterion and arbitrary jobs release times. This 

study proved that problem in this state is NP-hard. Cheng et 

al. [10] investigated a problem of three-machine permutation 

flow shop scheduling with release where the objective is 

makespan. They synthesized an adaptive branching rule with 

a fuzzy search strategy to diminish the search area which lead 

to optimal solution as soon as possible. Sangsawang et al. 

[11] considered two-stage reentrant flexible flow shop 

(RFFS) with blocking constraint that the objective is 

minimizing the makespan. They applied hybrid genetic 

algorithm (HGA) with adaptive auto-tuning based on fuzzy 

logic controller and hybrid particle swarm optimization 

(HPSO) (Cauchy distribution) to solve the problem. 

Behnamian and Fatemi Ghomi [12] considered a PSO-SA 

hybrid meta-heuristic for a new comprehensive regression 

model to time-series predicting. Moslehi and Khorasanian 

[13] used blocking flow shop scheduling problem for 

minimizing the total completion time criterion. They 

introduced two mixed binary integer programming models, 

the first one is modeled based on the departure times of jobs 

from machines and the second is modeled based on the idle 

and blocking times of jobs. Wang et al. [14] to solve the 

blocking permutation flow shop scheduling problem with 

total flow time criterion proposed a hybrid modified global-

best harmony search (hmgHS) algorithm. Zandieh and 

Karimi [15] concurrently minimized the total weighted 

tardiness and the maximum completion time with 

consideration of a multi-objective group scheduling in a 

hybrid flexible flow shop setting with sequence dependent 

setup times. They applied a multi-population genetic 

algorithm for the problem and juxtaposed it with the multi-

objective genetic algorithm and the non-dominated sorting 

genetic algorithm. Wang et al. [16] suggested a novel hybrid 

discrete differential evolution (HDDE) algorithm to 

minimize makespan of blocking flow shop scheduling 

problems. Behnamian and Zandieh [17] minimized earliness 

and quadratic tardiness in the hybrid flow shop scheduling 

problem. They assumed each stage minimally has one 

machine. On the other hand, at least one of stages possesses 

more than one machine. Furthermore, there is no release time 

for jobs which are independent and each job must be 

allocated at most to one machine within one stage.  
   

2. Problem description and formulation 
  

In this study a hybrid flow shop system is considered which 

consists p parts that should be processed at s stages and all 

the p parts should pass all stages. In addition, m is attributed 

to stations within stages, except station of the first stage 

which is  storehouse, the rest of stages incorporate Ms 

stations (𝑀𝑠 ≥ 1), each station contains parallel processing 

machines which are supplied by a AGVs. All tasks on 

machines such as loading, unloading and setup are 

performed by Robotic Adaptive Grippers . Dissimilar to 

other works in this category, we considered limited t travels 

for AGVs (permitted travels). In other words, AGVs cannot 

do travel more than allowed ones this assumption is made 

firstly, because in the real situation transportation fleet are 

not allowed to do travel unlimitedly. Secondly, if we put the 

assumption of unlimited travels, it would increase 

computation of the model tremendously and unnecessarily. 

Therefore, donating limited travels to AGVs does make 

sense. Each p part which is transferred by one of the AGVs 

into each stage should be processed on one machine and 

consequently, each of p part should be transferred by one a 

AGV at one of its t travels. There is no buffer between stages. 

So, p parts cannot be stayed at machines and after they have 

been processed they should immediately be carried by AGV.  

Figure 1. illustrates a hybrid flow shop system with AGV-

based transportation. Colorful rectangles show stations 

within stages in which rectangles with white interior 

illustrate related parallel machines and rectangles with grey 

interior demonstrate unrelated parallel machines and their 

borders color corresponds to the colors of stages in which 

they are installed. The black lines present routes on which 

AGVs can move forward (to convey loaded parts) and 

backward (to reload again). The green arrow heads on black 

routes show forward movements are allowed and the orange 

arrow heads on black routes show backward movements are 

allowed. Colorful lines (corresponding to the stages they 

stem out from) suggest that just backward movements are 

authorized and due to this they are specified by just orange 

arrow heads (because orange arrow symbolizes backward 

movement). The ideology behind this is that some routes 

(backward only) cannot be used for forward movements 

since forward movements can be implemented just to next 

stage (all parts should pass all stages) and in “just backward 

movements” routes AGVs can go to all machines regardless 

of that in which stage they are existed. Moreover, backward 

movement can be attributed to in-stage movements among 

interior-stage-machines in order to load parts and unload 

them in next stage. 
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2.1. The Mixed Integer linear programming (MILP) Model  

  

In this section, a MILP model is formulated for Hybrid flow 

shop problem with Robotic Adaptive Gripper-based  

processing and AGV-based transportation system to 

minimize makespan and optimum number of travels 

(minimizing travels time). The developed model is discussed 

in the following. 

  

2.2. Assumptions 

  

 There is at least one machine at each stage. 

 No part is exchanged between parallel machines (an      

AGV cannot go from a machine to another parallel 

machine unless for loading parts).    

 All the required parts for being processed are provided 

entirely in storage. 

 All parts should pass all stages. 

 Sum of the loading and unloading time for each part is 

shown by one parameter (𝐿𝑇𝑝). 

  

2.3. Indices 

  

P: Set of parts where, 

p: Index of part, p ∈ {1,2, … , P} 

F: Set of parts families where, 

f: Index of parts family, 𝑓 ∈ {1,2, … , 𝐹} 

S: Set of stages where, 

s: Index of stages, 𝑠 ∈ {1,2, … , 𝑆} 

e: Index of last stage 

A: Set of AGVs where, 

a: Index of AGVs, 𝑎 ∈ {1,2, … , 𝐴} 

T: Number of travels for AGVs where, 

t: Index of travels, 𝑡 ∈ {1,2, … , 𝑇} 

h: Index of last travel. 

M: Set of machines with Robotic Adaptive Grippers where,        

m:Index of machines with Robotic Adaptive 

Grippers, 𝑚∈{1,2,…,𝑀}. 

𝑀𝑠 : Set of machines with Robotic Adaptive Grippers 

existing in stage s. 

 

2.4. Parameters 

 

𝐶𝐴𝑃𝑎      Capacity of automated guided vehicles (AGV) a. 

𝑆𝑇𝑝,𝑚      Required setup time for part p on machine with 

Robotic Adaptive Gripper m . 

𝑃𝑇𝑝,𝑚      Required time for processing part p on machine 

with Robotic Adaptive Gripper m . 

𝐹𝑀𝑚′,𝑚,𝑠,𝑎  Required time for AGV a to travel from existed 

machine 𝑚′  to machine 𝑚  in the stage s (forward 

movement). 

𝐵𝑀𝑚,𝑚′,𝑎   Required time for AGV a to travel from 

machine 𝑚 to machine 𝑚′ (backward movement). 

𝐿𝑇𝑝        Sum of the Required time for Robotic Adaptive 

Grippers to load and unload each part p on AGV. 

𝐷          Total numbers of parts a last stage. 

𝐻          A large number. 

  

2.5.  Binary parameters 

  

𝑅𝑅𝑅𝑚′ ,𝑚,𝑠,𝑎,𝑡   Showing if AGV a is at machine 𝑚′ , to 

which next machine 𝑚 at the stage 𝑠 is permitted to go (it 

prevents assigning infeasible allocations of machine to stage). 

𝑄𝑓,𝑝           Showing which parts p are included to part 

family f 

𝑃𝐴𝑝,𝑚         Process ability, showing which machines m 

can process part p. 

  

2.6. Positive variables 

  

𝑅𝑇𝑚′,𝑚,𝑠,𝑎,𝑡    The time (receipt time) at which AGV’s load 

is received at machine 𝑚  (located in stage s) by its 𝑡𝑡ℎ 

travel started from machine 𝑚′ (located in stage s-1). 

𝑃𝐶𝑝,𝑚′,𝑚,𝑠,𝑎,𝑡    The process completion time of part p on 

machine 𝑚 which is transferred from machine 𝑚′ (located 

in stage s-1) to machine 𝑚 (located in stage s) by AGV a at 

its 𝑡𝑡ℎ travel. 

𝐿𝑃𝐶𝑇         The time at which all parts reach the output 

stage, makespan. 

𝐸𝑇𝑝,𝑚′,𝑚,𝑠,𝑎,𝑡    The waiting interval that part p may have at 

machine 𝑚 to be processed on (Entrance Tardiness).  

𝐸𝑋𝑇𝑝,𝑚′,𝑚,𝑠,𝑎,𝑡   The waiting interval that part p may have 

at machine 𝑚 (after being processed) to be transferred from 

(Exit Tardiness).  

  

2.7. Binary variables 

  

𝑤𝑚′,𝑚,𝑠,𝑎,𝑡     1 if AGV a at its 𝑡𝑡ℎ  travel goes from 

machine 𝑚′ to machine m, 0 otherwise. 

 

𝑌𝑝,𝑚′,𝑚,𝑠,𝑎,𝑡     1 if AGV a at its 𝑡𝑡ℎ travel transfers part 

p from machine 𝑚′ to machine m, 0 otherwise. 

 

Figure 1- An example of Hybrid Flow Shop with 

robotic processing and AGV-based transportation 

system 
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𝑈𝑚,𝑚′,𝑎,𝑡       1 if AGV a goes from machine m to 

machine 𝑚′ at its 𝑡𝑡ℎ travel’s return to reload again, 0 

otherwise. 

 

𝑆𝑆𝑝,𝑝′,𝑠        1 if part p be processed before part 𝑝′ in 

stage s, 0 otherwise. 

  

2.8. Objective function and constraints 

  

Minimize: 

 

𝐿𝑃𝐶𝑇 + ∑ ∑  ∑ ∑  ∑ 𝑊𝑚′,𝑚,𝑠,𝑎,𝑡

𝑡∈𝑇𝑠∈𝑆   𝑎∈𝐴   𝑚∈𝑀𝑠 𝑚′∈𝑀𝑠−1 

× 𝑅𝑅𝑅𝑚′ ,𝑚,𝑠,𝑎,𝑡 × 𝐹𝑀𝑚′,𝑚,𝑠,𝑎  

 

  

∑ ∑ ∑ 𝑊𝑚′,𝑚,𝑠,𝑎,𝑡 × 𝑅𝑅𝑅𝑚′,𝑚,𝑠,𝑎,𝑡 ≤ 1

𝑚∈𝑀𝑠𝑚′∈𝑀𝑠−1𝑠∈𝑆−{1}

 
(1) 

 ∀   𝑡 ∈ 𝑇  , 𝑎 ∈ 𝐴 
 

∑ ∑ ∑ ∑ 𝑌𝑝,𝑚′ ,𝑚,𝑠,𝑎,𝑡 × 𝑅𝑅𝑅𝑚′,𝑚,𝑠,𝑎,𝑡

𝑎∈𝐴𝑡∈𝑇  𝑚∈𝑀𝑠𝑚′∈𝑀𝑠−1 

≤ 1   
(2) 

 ∀   𝑝 ∈ 𝑃 , 𝑠 ∈ 𝑆 − {1} 
 

∑ ∑ ∑ ∑ 𝑌𝑝,𝑚′,𝑚,𝑠,𝑎,𝑡 × 𝑅𝑅𝑅𝑚′,𝑚,𝑠,𝑎,𝑡

𝑝∈𝑃𝑠∈𝑆−{1}𝑚∈𝑀𝑠𝑚′∈𝑀𝑠−1 

×  𝑃𝐴𝑝,𝑚 ≤ 𝐶𝐴𝑃𝑎   
(3) 

 ∀   𝑎 ∈ 𝐴 , 𝑡 ∈ 𝑇 
 
 

∑ ∑ 𝑌𝑝,𝑚′,𝑚,𝑠,𝑎,𝑡 × 𝑅𝑅𝑅𝑚′,𝑚,𝑠,𝑎,𝑡

𝑠∈𝑆−{1}𝑚′∈𝑀𝑠−1

× 𝑃𝐴𝑝,𝑚

≤ ∑ ∑ 𝑊𝑚′ ,𝑚,𝑠,𝑎,𝑡

𝑠∈𝑆−{1}𝑚′∈𝑀𝑠−1  

× 𝑅𝑅𝑅𝑚′ ,𝑚,𝑠,𝑎,𝑡 
(4) 

 ∀   𝑝 ∈ 𝑃 , 𝑎 ∈ 𝐴 , 𝑚 ∈ 𝑀𝑠 , 𝑡 ∈ 𝑇 
 
 

∑ ∑ 𝑌𝑝,𝑚′,𝑚,𝑠,𝑎,𝑡 × 𝑅𝑅𝑅𝑚′,𝑚,𝑠,𝑎,𝑡 ×  𝑃𝐴𝑝,𝑚

𝑠∈𝑆−{1}𝑚∈𝑀𝑠

≤ ∑ ∑ 𝑊𝑚′,𝑚,𝑠,𝑎,𝑡

𝑠∈𝑆−{1}𝑚∈𝑀𝑠  

× 𝑅𝑅𝑅𝑚′ ,𝑚,𝑠,𝑎,𝑡 

    (5) 

 ∀   𝑝 ∈ 𝑃 , 𝑎 ∈ 𝐴 , 𝑚′ ∈ 𝑀𝑠−1 , 𝑡 ∈ 𝑇 
 
 
 
 
 

∑ ∑ 𝑌𝑝,𝑚′,𝑚,𝑠,𝑎,𝑡 × 𝑅𝑅𝑅𝑚′,𝑚,𝑠,𝑎,𝑡

𝑠∈𝑆−{1}𝑚′∈𝑀𝑠−1

×  𝑃𝐴𝑝,𝑚

× 𝐻

≥ ∑ ∑ 𝑃𝐶𝑝,𝑚′ ,𝑚,𝑠,𝑎,𝑡

𝑠∈𝑆−{1}𝑚′∈𝑀𝑠−1

× 𝑅𝑅𝑅𝑚′,𝑚,𝑠,𝑎,𝑡 

 

 

 

(6) 

 ∀   𝑝 ∈ 𝑃 , 𝑎 ∈ 𝐴 , 𝑡 ∈ 𝑇 , 𝑚 ∈ 𝑀𝑠 

  

∑ ∑ 𝑌𝑝,𝑚′ ,𝑚,𝑠,𝑎,𝑡 × 𝑅𝑅𝑅𝑚′,𝑚,𝑠,𝑎,𝑡

𝑠∈𝑆−{1}𝑚∈𝑀𝑠 

×  𝑃𝐴𝑝,𝑚 × 𝐻

≥ ∑ ∑ 𝑃𝐶𝑝,𝑚′,𝑚,𝑠,𝑎,𝑡

𝑠∈𝑆−{1}𝑚∈𝑀𝑠

× 𝑅𝑅𝑅𝑚′ ,𝑚,𝑠,𝑎,𝑡    

(7) 

 ∀   𝑝 ∈ 𝑃 , 𝑎 ∈ 𝐴 , 𝑡 ∈ 𝑇 , 𝑚′ ∈ 𝑀𝑠−1 
 

  

∑ ∑ 𝑊𝑚′,𝑚,𝑠,𝑎,𝑡 × 𝑅𝑅𝑅𝑚′ ,𝑚,𝑠,𝑎,𝑡

𝑠∈𝑆−{1}𝑚∈𝑀𝑠 

× 𝐻

≥ ∑ ∑ 𝑅𝑇𝑚′,𝑚,𝑠,𝑎,𝑡

𝑠∈𝑆−{1}𝑚∈𝑀𝑠

 

× 𝑅𝑅𝑅𝑚′ ,𝑚,𝑠,𝑎,𝑡 

(8) 

 ∀   𝑎 ∈ 𝐴 , 𝑡 ∈ 𝑇 , 𝑚′ ∈ 𝑀𝑠−1 
 

  

∑ ∑ 𝑊𝑚′,𝑚,𝑠,𝑎,𝑡 × 𝑅𝑅𝑅𝑚′,𝑚,𝑠,𝑎,𝑡

𝑠∈𝑆−{1}𝑚′∈𝑀𝑠−1 

× 𝐻

≥ ∑ ∑ 𝑅𝑇𝑚′,𝑚,𝑠,𝑎,𝑡

𝑠∈𝑆−{1}𝑚′∈𝑀𝑠−1

 

× 𝑅𝑅𝑅𝑚′ ,𝑚,𝑠,𝑎,𝑡 

(9) 

 ∀   𝑎 ∈ 𝐴 , 𝑡 ∈ 𝑇  , 𝑚 ∈ 𝑀𝑠 
 

 

∑   ∑ ∑ 𝑊𝑚′,𝑚,𝑠,𝑎,𝑡 × 𝑅𝑅𝑅𝑚′,𝑚,𝑠,𝑎,𝑡

𝑠∈𝑆−{1}𝑚′∈𝑀𝑠−1𝑚∈𝑀𝑠

≤ ∑   ∑ ∑ 𝑊𝑠,𝑚,𝑚′,𝑎,𝑡−1

𝑠∈𝑆−{1}𝑚′∈𝑀𝑠−1𝑚∈𝑀𝑠

× 𝑅𝑅𝑅𝑠,𝑚,𝑚′,𝑎,𝑡−1 

 

 

 

 

 

(10) 

∀  𝑡 ∈ 𝑇 , 𝑡 > 1 , 𝑎 ∈ 𝐴 
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𝑀 × (2

− ∑ ∑ ∑ 𝑊𝑚′ ,𝑚,𝑠,𝑎,𝑡 × 𝑅𝑅𝑅𝑚′,𝑚,𝑠,𝑎,𝑡

𝑠∈𝑆−{1}𝑚∈𝑀𝑠𝑚′∈𝑀𝑠−1

− ∑ ∑ 𝑈𝑚,𝑚′ ,𝑎,𝑡−1

𝑚∈𝑀𝑠𝑚′∈𝑀−{𝑚}

)

+ ∑ ∑ ∑ 𝑅𝑇𝑚′,𝑚,𝑠,𝑎,𝑡

𝑠∈𝑆−{1}𝑚∈𝑀𝑠𝑚′∈𝑀𝑠−1

× 𝑅𝑅𝑅𝑚′,𝑚,𝑠,𝑎,𝑡  

≥ ∑ ∑ ∑ 𝑅𝑇𝑚′,𝑚,𝑠,𝑎,𝑡−1

𝑠∈𝑆−{1}𝑚∈𝑀𝑠𝑚′∈𝑀𝑠−1  

× 𝑅𝑅𝑅𝑚′,𝑚,𝑠,𝑎,𝑡−1

+ ∑ ∑ 𝑈𝑚,𝑚′ ,𝑎,𝑡−1

𝑚∈𝑀𝑠𝑚′∈𝑀−{𝑚}

× 𝐵𝑀𝑚,𝑚′,𝑎  

+ ∑ ∑ ∑ 𝑊𝑚′,𝑚,𝑠,𝑎,𝑡 × 𝑅𝑅𝑅𝑚′ ,𝑚,𝑠,𝑎,𝑡

𝑠∈𝑆−{1}𝑚∈𝑀𝑠𝑚′∈𝑀𝑠−1  

× 𝐹𝑀𝑚′,𝑚,𝑠,𝑎  + ∑ ∑ ∑ ∑ 𝑌𝑝,𝑚′,𝑚,𝑠,𝑎,𝑡

𝑝∈𝑃𝑠∈𝑆−{1}𝑚∈𝑀𝑠𝑚′∈𝑀𝑠−1  

× 𝑅𝑅𝑅𝑚′ ,𝑚,𝑠,𝑎,𝑡 × 𝐿𝑇𝑝 

(11) 

 ∀   𝑡 > 1 , 𝑎 ∈ 𝐴 
 

𝑀 × (1 − ∑ 𝑌𝑝,𝑚′ ,𝑚,𝑠,𝑎,𝑡

𝑚∈𝑀𝑠

× 𝑅𝑅𝑅𝑚′,𝑚,𝑠,𝑎,𝑡 × 𝑃𝐴𝑝,𝑚)

+ ∑ 𝑅𝑇𝑚′,𝑚,𝑠,𝑎,𝑡

𝑚∈𝑀𝑠

× 𝑅𝑅𝑅𝑚′ ,𝑚,𝑠,𝑎,𝑡

≥ ∑ 𝑃𝐶𝑝,𝑚′′,𝑚′ ,𝑠−1,𝑎′ ,𝑡′

𝑚′′∈𝑀𝑠−2

× 𝑅𝑅𝑅𝑚′′ ,𝑚′,𝑠−1,𝑎′,𝑡′

+ ∑ 𝑊𝑚′,𝑚,𝑠,𝑎,𝑡 × 𝑅𝑅𝑅𝑚′,𝑚,𝑠,𝑎,𝑡

𝑚∈𝑀𝑠

× 𝐹𝑀𝑚′,𝑚,𝑠,𝑎  

+ ∑ ∑ 𝑌𝑝′,𝑚′,𝑚,𝑠,𝑎,𝑡

𝑝′∈𝑃𝑚∈𝑀𝑠  

× 𝑅𝑅𝑅𝑚′ ,𝑚,𝑠,𝑎,𝑡 × 𝐿𝑇𝑝′ 

(12) 

∀ 𝑡, 𝑡′ ∈ 𝑇, 𝑎, 𝑎′ ∈ 𝐴, 𝑠 ∈ 𝑆 − {1,2}, 𝑝 ∈ 𝑃, 𝑚′ ∈ 𝑀𝑠−1 

 

 

 

 

 

 
 

 

∑ ∑ ∑ 𝑃𝐶𝑝,𝑚′ ,𝑚,𝑠,𝑎,𝑡

𝑠∈𝑆−{1}𝑚∈𝑀𝑠𝑚′∈𝑀𝑠−1

× 𝑅𝑅𝑅𝑚′,𝑚,𝑠,𝑎,𝑡 + (1

− ∑ ∑ ∑ 𝑌𝑝,𝑚′,𝑚,𝑠,𝑎,𝑡

𝑠∈𝑆−{1}𝑚∈𝑀𝑠𝑚′∈𝑀𝑠−1

× 𝑅𝑅𝑅𝑚′ ,𝑚,𝑠,𝑎,𝑡 × 𝑃𝐴𝑝,𝑚) × 𝐻

≥ ∑ ∑ ∑ 𝑅𝑇𝑚′,𝑚,𝑠,𝑎,𝑡

𝑠∈𝑆−{1}𝑚∈𝑀𝑠𝑚′∈𝑀𝑠−1

× 𝑅𝑅𝑅𝑚′ ,𝑚,𝑠,𝑎,𝑡

+ ∑ ∑ ∑ 𝑌𝑝,𝑚′,𝑚,𝑠,𝑎,𝑡

𝑠∈𝑆−{1}𝑚∈𝑀𝑠𝑚′∈𝑀𝑠−1

× 𝑅𝑅𝑅𝑚′ ,𝑚,𝑠,𝑎,𝑡 × 𝑃𝑇𝑝,𝑚 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(13) 

 ∀   𝑝 ∈ 𝑃, 𝑎 ∈ 𝐴, 𝑡 ∈ 𝑇 
 
 

 

∑ ∑ 𝑈𝑚,𝑚′ ,𝑎,𝑡

𝑚∈𝑀−{1},𝑚≠𝑚′𝑚′∈𝑀

 ≤ 1 

(14) 
 ∀   𝑎 ∈ 𝐴 , 𝑡 ∈ 𝑇 , 𝑡 < ℎ 
 

  

∑ ∑ 𝑊𝑚′,𝑚,𝑠,𝑎,𝑡

𝑠∈𝑆−{1}

× 𝑅𝑅𝑅𝑚′ ,𝑚,𝑠,𝑎,𝑡

𝑚∈𝑀𝑠

≤ ∑ 𝑈𝑚′′,𝑚′ ,𝑎,𝑡−1

𝑚′′∈𝑀,𝑚′′≠𝑚′

 (15) 

 ∀   𝑎 ∈ 𝐴, 𝑡 ∈ 𝑇, 𝑡 > 1, 𝑚′ ∈ 𝑀𝑠−1  
 
 

∑ ∑ 𝑊𝑚′,𝑚,𝑠,𝑎,𝑡

𝑠∈𝑆−{1}𝑚′∈𝑀𝑠−1

× 𝑅𝑅𝑅𝑚′,𝑚,𝑠,𝑎,𝑡

≥ ∑ 𝑈𝑚,𝑚′′ ,𝑎,𝑡

𝑚′′∈𝑀,𝑚≠𝑚′′

     
(16) 

 ∀   𝑎 ∈ 𝐴, 𝑡 ∈ 𝑇, 𝑡 < ℎ, 𝑚 ∈ 𝑀𝑠 
 
 

∑ ∑ ∑  ∑  ∑  𝑌𝑝,𝑚′,𝑚,𝑠,𝑎,𝑡

 𝑝∈𝑃 𝑡∈𝑇𝑎∈𝐴𝑚∈𝑀𝑠𝑚′∈𝑀𝑠−1

× 𝑅𝑅𝑅𝑚′ ,𝑚,𝑠,𝑎,𝑡 × 𝑃𝐴𝑝,𝑚 = 𝐷 (17) 

∀  𝑠 = 𝑒  
 

𝑀 × (2 − ∑ 𝑌𝑝,𝑚′ ,𝑚,𝑠,𝑎,𝑡 × 𝑅𝑅𝑅𝑚′,𝑚,𝑠,𝑎,𝑡

 𝑚′ ∈𝑀𝑠−1

× 𝑄𝑓,𝑝

− ∑ 𝑌𝑝′,𝑚′′ ,𝑚,s,𝑎′ ,𝑡′

𝑚′′∈𝑀𝑠−1

× 𝑅𝑅𝑅𝑚′′ ,𝑚,s,𝑎′,𝑡′ × 𝑄𝑓,𝑝′) + (1

− 𝑆𝑆𝑝,𝑝′,𝑠) × 𝐻

+ ∑ 𝑃𝐶𝑝,𝑚′,𝑚,𝑠,𝑎,𝑡

 𝑚′ ∈𝑀𝑠−1

× 𝑅𝑅𝑅𝑚′ ,𝑚,𝑠,𝑎,𝑡

≥ ∑ 𝑃𝐶𝑝′,𝑚′′ ,𝑚,s,𝑎′,𝑡′

𝑚′′∈𝑀𝑠−1

× 𝑅𝑅𝑅𝑚′′ ,𝑚,s,𝑎′,𝑡′

+ ∑ 𝑌𝑝,𝑚′,𝑚,𝑠,𝑎,𝑡

 𝑚′ ∈𝑀𝑠−1

× 𝑅𝑅𝑅𝑚′ ,𝑚,𝑠,𝑎,𝑡 × 𝑃𝑇𝑝,𝑚 

 
∀ 𝑎, 𝑎′ ∈ 𝐴, 𝑡, 𝑡′ ∈ 𝑇, 𝑚 ∈ 𝑀𝑠, 𝑝, 𝑝′ ∈ 𝑃, 𝑝 ≠ 𝑝′, 𝑓 ∈
𝐹 , 𝑠 ∈ 𝑆 − {1}  
 

(18) 
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𝑀 × (2 − ∑ 𝑌𝑝,𝑚′,𝑚,𝑠,𝑎,𝑡 × 𝑅𝑅𝑅𝑚′,𝑚,𝑠,𝑎,𝑡

 𝑚′ ∈𝑀𝑠−1 

× 𝑄𝑓,𝑝

− ∑ 𝑌𝑝′,𝑚′′ ,𝑚,s,𝑎′ ,𝑡′

𝑚′′∈𝑀𝑠−1

× 𝑅𝑅𝑅𝑚′′ ,𝑚,s,𝑎′,𝑡′ × 𝑄𝑓,𝑝′) + (𝑆𝑆𝑝,𝑝′,𝑠)

× 𝐻 + ∑ 𝑃𝐶𝑝′,𝑚′′ ,𝑚,s,𝑎′,𝑡′

𝑚′′∈𝑀𝑠−1

× 𝑅𝑅𝑅𝑚′′ ,𝑚,s,𝑎′,𝑡′

≥ ∑ 𝑃𝐶𝑝,𝑚′,𝑚,𝑠,𝑎,𝑡

 𝑚′ ∈𝑀𝑠−1

× 𝑅𝑅𝑅𝑚′ ,𝑚,𝑠,𝑎,𝑡

+ ∑ 𝑌𝑝′,𝑚′′,𝑚,s,𝑎′ ,𝑡′

𝑚′′∈𝑀𝑠−1 

× 𝑅𝑅𝑅𝑚′′ ,𝑚,s,𝑎′,𝑡′ × 𝑃𝑇𝑝′,m       

(19) 

∀ 𝑎, 𝑎′ ∈ 𝐴 , 𝑡, 𝑡′ ∈ 𝑇, 𝑚 ∈ 𝑀𝑠 , 𝑝, 𝑝′ ∈
𝑃, 𝑝 ≠ 𝑝′, 𝑓 ∈ 𝐹 , 𝑠 ∈ 𝑆 − {1}  

  
  

𝑀 × (2 − ∑ 𝑌𝑝,𝑚′,𝑚,𝑠,𝑎,𝑡 × 𝑅𝑅𝑅𝑚′,𝑚,𝑠,𝑎,𝑡

 𝑚′∈𝑀𝑠−1

× 𝑄𝑓,𝑝

− ∑ 𝑌𝑝′,𝑚′′,𝑚,s,𝑎′ ,𝑡′

𝑚′′∈𝑀𝑠−1

× 𝑅𝑅𝑅𝑚′′,𝑚,s,𝑎′ ,𝑡′ × 𝑄𝑓′,𝑝′) +  (1

− 𝑆𝑆𝑝,𝑝′,𝑠) × 𝐻

+ ∑ 𝑃𝐶𝑝,𝑚′,𝑚,𝑠,𝑎,𝑡

 𝑚′ ∈𝑀𝑠−1

× 𝑅𝑅𝑅𝑚′,𝑚,𝑠,𝑎,𝑡

≥ ∑ 𝑃𝐶𝑝′,𝑚′′,𝑚,s,𝑎′ ,𝑡′

𝑚′′∈𝑀𝑠−1

× 𝑅𝑅𝑅𝑚′′,𝑚,s,𝑎′ ,𝑡′

+ ∑ 𝑌𝑝,𝑚′,𝑚,𝑠,𝑎,𝑡

 𝑚′ ∈𝑀𝑠−1

× 𝑅𝑅𝑅𝑚′,𝑚,𝑠,𝑎,𝑡 × 𝑃𝑇𝑝,𝑚 + 𝑆𝑇𝑝,𝑚 

  
∀ 𝑎. 𝑎′ ∈ 𝐴 , 𝑡, 𝑡′ ∈ 𝑇 , 𝑚 ∈ 𝑀𝑠 , 𝑝, 𝑝′ ∈ 𝑃, 𝑝 ≠
𝑝′ , 𝑓, 𝑓′ ∈ 𝐹 , 𝑓 ≠ 𝑓′ , 𝑠 ∈ 𝑆 − {1}  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(20) 

𝑀 × (2 − ∑ 𝑌𝑝,𝑚′,𝑚,𝑠,𝑎,𝑡 × 𝑅𝑅𝑅𝑚′,𝑚,𝑠,𝑎,𝑡

 𝑚′ ∈𝑀𝑠−1 

× 𝑄𝑓,𝑝

− ∑ 𝑌𝑝′,𝑚′′,𝑚,s,𝑎′ ,𝑡′

𝑚′′∈𝑀𝑠−1 

× 𝑅𝑅𝑅𝑚′′ ,𝑚,s,𝑎′,𝑡′ × 𝑄𝑓′,𝑝′)

+ (𝑆𝑆𝑝,𝑝′,𝑠) × 𝐻

+ ∑ 𝑃𝐶𝑝′,𝑚′′,𝑚,s,𝑎′ ,𝑡′

𝑚′′∈𝑀𝑠−1

× 𝑅𝑅𝑅𝑚′′ ,𝑚,s,𝑎′,𝑡′

≥ ∑ 𝑃𝐶𝑝,𝑚′,𝑚,𝑠,𝑎,𝑡

 𝑚′ ∈𝑀𝑠−1 

× 𝑅𝑅𝑅𝑚′ ,𝑚,𝑠,𝑎,𝑡

+ ∑ 𝑌𝑝′,𝑚′′ ,𝑚,s,𝑎′ ,𝑡′

𝑚′′∈𝑀𝑠−1

× 𝑅𝑅𝑅𝑚′′ ,𝑚,s,𝑎′,𝑡′ × 𝑃𝑇𝑝′,m + 𝑆𝑇𝑝′,𝑚 

  

 (21) 

 ∀ 𝑎. 𝑎′ ∈ 𝐴 , 𝑡, 𝑡′ ∈ 𝑇 , 𝑚 ∈ 𝑀𝑠 , 𝑝, 𝑝′ ∈ 𝑃, 𝑝 ≠
𝑝′ , 𝑓, 𝑓′ ∈ 𝐹, 𝑓 ≠ 𝑓′ , 𝑠 ∈ 𝑆 − {1} 
 

 

∑ ∑ 𝐸𝑋𝑇𝑝,𝑚′,𝑚,𝑠,𝑎,𝑡 × 𝑅𝑅𝑅𝑚′,𝑚,𝑠,𝑎,𝑡

𝑠∈𝑆−{1}𝑚′∈𝑀𝑠−1

+ 𝐸𝑇𝑝,𝑚′,𝑚,𝑠,𝑎,𝑡 × 𝑅𝑅𝑅𝑚′,𝑚,𝑠,𝑎,𝑡

≥ ∑ ∑ 𝑌𝑝,𝑚′,𝑚,𝑠,𝑎,𝑡

𝑠∈𝑆−{1}𝑚′∈𝑀𝑠−1

 

× 𝑅𝑅𝑅𝑚′ ,𝑚,𝑠,𝑎,𝑡 × 𝐻   

  

(22) 

 ∀ 𝑝 ∈ 𝑃 , 𝑎 ∈ 𝐴 , 𝑡 ∈ 𝑇 , 𝑚 ∈  𝑀𝑠 
 
 
 
 
 

 

∑ ∑ 𝐸𝑋𝑇𝑝,𝑚′ ,𝑚,𝑠,𝑎,𝑡 × 𝑅𝑅𝑅𝑚′,𝑚,𝑠,𝑎,𝑡

𝑠∈𝑆−{1}𝑚∈𝑀𝑠

+ 𝐸𝑇𝑝,𝑚′,𝑚,𝑠,𝑎,𝑡 × 𝑅𝑅𝑅𝑚′,𝑚,𝑠,𝑎,𝑡

≥ ∑ ∑ 𝑌𝑝,𝑚′,𝑚,𝑠,𝑎,𝑡

𝑠∈𝑆−{1}𝑚∈𝑀𝑠

× 𝑅𝑅𝑅𝑚′ ,𝑚,𝑠,𝑎,𝑡 × 𝐻 

 

 

 
  

(23) 

∀  𝑝 ∈ 𝑃 , 𝑎 ∈ 𝐴 , 𝑡 ∈ 𝑇 , 𝑚′ ∈ 𝑀𝑠−1  
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∑ ∑ 𝑃𝐶𝑝,𝑚′,𝑚,𝑠,𝑎,𝑡 × 𝑅𝑅𝑅𝑚′ ,𝑚,𝑠,𝑎,𝑡

𝑚′∈𝑀𝑠−1𝑚∈𝑀𝑠

− ∑ ∑ 𝑅𝑇𝑚′,𝑚,𝑠,𝑎,𝑡

𝑚′∈𝑀𝑠−1𝑚∈𝑀𝑠

× 𝑅𝑅𝑅𝑚′ ,𝑚,𝑠,𝑎,𝑡

− ∑ ∑ 𝑌𝑝,𝑚′,𝑚,𝑠,𝑎,𝑡

𝑚′∈𝑀𝑠−1𝑚∈𝑀𝑠

× 𝑅𝑅𝑅𝑚′ ,𝑚,𝑠,𝑎,𝑡 × 𝑃𝑇𝑝,𝑚

≤ ∑ ∑ 𝐸𝑇𝑝,𝑚′,𝑚,𝑠,𝑎,𝑡

𝑚′∈𝑀𝑠−1𝑚∈𝑀𝑠

× 𝑅𝑅𝑅𝑚′ ,𝑚,𝑠,𝑎,𝑡  × 𝑃𝐴𝑝,𝑚 + (1

− ∑ ∑ 𝑌𝑝,𝑚′,𝑚,𝑠,𝑎,𝑡

𝑚′∈𝑀𝑠−1𝑚∈𝑀𝑠

× 𝑅𝑅𝑅𝑚′ ,𝑚,𝑠,𝑎,𝑡  × 𝑃𝐴𝑝,𝑚) × 𝐻 

∀  𝑎 ∈ 𝐴 , 𝑡 ∈ 𝑇 , 𝑝 ∈ 𝑃, 𝑠 ∈ 𝑆 − {1}  
 
 

(24) 

∑ ∑ 𝑅𝑇𝑚,𝑚′′,𝑠+1,𝑎,𝑡 × 𝑅𝑅𝑅𝑚,𝑚′′,𝑠+1,𝑎,𝑡

𝑚′′∈𝑀𝑠+1𝑚∈𝑀𝑠

− ∑ ∑ ∑ ∑ 𝑃𝐶𝑝,𝑠,𝑚′,𝑚,𝑠,𝑎′ ,𝑡′

𝑡′∈𝑇𝑎′∈𝐴𝑚′∈𝑀𝑠−1𝑚∈𝑀𝑠

× 𝑅𝑅𝑅𝑠,𝑚′,𝑚,𝑠,𝑎′ ,𝑡′ × 𝑃𝐴𝑝,𝑚 

− ∑ ∑ ∑ 𝑌𝑝′,𝑚,𝑚′′,𝑠+1,𝑎,𝑡

𝑝′∈𝑃𝑚′′∈𝑀𝑠+1𝑚∈𝑀𝑠

× 𝑅𝑅𝑅𝑚,𝑚′′ ,𝑠+1,𝑎,𝑡 × 𝑃𝐴𝑝′,𝑚′′ × 𝐿𝑇𝑝′

− ∑ ∑ 𝑌𝑝,𝑚,𝑚′′,𝑠+1,𝑎,𝑡

𝑚′′∈𝑀𝑠+1𝑚∈𝑀𝑠

× 𝑅𝑅𝑅𝑚,𝑚′′ ,𝑠+1,𝑎,𝑡 × 𝑃𝐴𝑝,𝑚′′  × 𝐹𝑀𝑚,𝑚′′,𝑠+1,𝑎

≤  ∑ ∑ ∑ ∑ 𝐸𝑋𝑇𝑝,𝑠,𝑚′ ,𝑚,𝑠,𝑎′,𝑡′

𝑡′∈𝑇𝑎′∈𝐴𝑚′∈𝑀𝑠−1𝑚∈𝑀𝑠

× 𝑅𝑅𝑅𝑠,𝑚′,𝑚,𝑠,𝑎′ ,𝑡′ × 𝑃𝐴𝑝,𝑚 + (2

− ∑ ∑ 𝑌𝑝,𝑚,𝑚′′,𝑠+1,𝑎,𝑡

𝑚′′∈𝑀𝑠+1𝑚∈𝑀𝑠

× 𝑅𝑅𝑅𝑚,𝑚′′ ,𝑠+1,𝑎,𝑡  × 𝑃𝐴𝑝,𝑚′′

− ∑ ∑ ∑ ∑ 𝑌𝑝,𝑠,𝑚′,𝑚,𝑠,𝑎′,𝑡′

𝑡′∈𝑇𝑎′∈𝐴𝑚′∈𝑀𝑠−1𝑚∈𝑀𝑠

× 𝑅𝑅𝑅𝑠,𝑚′,𝑚,𝑠,𝑎′ ,𝑡′  × 𝑃𝐴𝑝,𝑚) 

(25) 

 ∀   𝑎 ∈ 𝐴 , 𝑡 ∈ 𝑇 , 𝑝 ∈ 𝑃, 𝑠 ∈ 𝑆 − {1, 𝑒} 
 

  

∑ ∑ ∑ 𝑌𝑝,𝑚′,𝑚,𝑠,𝑎,𝑡 × 𝑅𝑅𝑅𝑚′,𝑚,𝑠,𝑎,𝑡

𝑚′∈𝑀𝑠−1𝑎∈𝐴𝑡∈𝑇

= ∑ ∑ ∑ 𝑌𝑝,𝑚,𝑚′′,𝑠+1,𝑎,𝑡

𝑚′′∈𝑀𝑠+1𝑎∈𝐴𝑡∈𝑇

 

× 𝑅𝑅𝑅𝑚,𝑚′′ ,𝑠+1,𝑎,𝑡    

(26) 

 ∀  𝑝 ∈ 𝑃, 𝑚 ∈ 𝑀𝑠 , 𝑠 ∈ 𝑆 − {1, 𝑒} 
 
 

( ∑ ∑ ∑ ∑ ∑ ∑ 𝑃𝑇𝑝,𝑚′,𝑚,𝑠,𝑎,𝑡

𝑠∈𝑆𝑝∈𝑃𝑡∈𝑇𝑎∈𝐴𝑚∈𝑀𝑠𝑚′∈𝑀𝑠−1

× 𝑅𝑅𝑅𝑚′ ,𝑚,𝑠,𝑎,𝑡 × 𝑃𝐴𝑝,𝑚

+ ∑ ∑ ∑ ∑ ∑ ∑ 𝑇𝑇𝑝,𝑚′ ,𝑚,𝑠,𝑎,𝑡

𝑠∈𝑆𝑝∈𝑃𝑡∈𝑇𝑎∈𝐴𝑚∈𝑀𝑠𝑚′∈𝑀𝑠−1

× 𝑅𝑅𝑅𝑚′ ,𝑚,𝑠,𝑎,𝑡 × 𝑃𝐴𝑝,𝑚) × H

≤ ∑ ∑ 𝑃𝐶𝑝′,𝑚′,𝑚,𝑠′,𝑎′ ,𝑡′

𝑚∈𝑀𝑠𝑚′∈𝑀𝑠−1

× 𝑅𝑅𝑅𝑚′ ,𝑚,𝑠′,𝑎′ ,𝑡′ × 𝑃𝐴𝑝′,𝑚 

(27) 

 ∀  𝑝′ ∈ 𝑃, 𝑠′ = 𝑒, 𝑎′ ∈ 𝐴, 𝑡′ ∈ 𝑇 

 

𝐿𝑃𝐶𝑇 ≥ ∑ 𝑃𝐶𝑝,𝑚′,𝑚,𝑠,𝑎,𝑡 × 𝑅𝑅𝑅𝑚′,𝑚,𝑠,𝑎,𝑡

𝑚′∈𝑀𝑠−1

 

(28) 
∀  𝑝 ∈ 𝑃, 𝑚′ ∈ 𝑀𝑠−1 , 𝑠 = 𝑒, 𝑎 ∈ 𝐴, 𝑡 ∈ 𝑇 

  

 𝑃𝐶𝑝,𝑚′,𝑚,𝑠,𝑎,𝑡 , 𝑅𝑇𝑚′,𝑚,𝑠,𝑎,𝑡 , 𝐿𝑃𝐶𝑇 , 𝑆𝑆𝑝,𝑝′,𝑠,  

𝐸𝑇𝑝,𝑚′,𝑚,𝑠,𝑎,𝑡 , 𝐸𝑋𝑇𝑝,𝑚′ ,𝑚,𝑠,𝑎,𝑡 ≥ 0 

 

(29) 

 ∀  𝑝 ∈ 𝑃, 𝑚′ ∈ 𝑀𝑠−1, 𝑎 ∈ 𝐴, 𝑡 ∈ 𝑇, 𝑚 ∈ 𝑀𝑠, 𝑠 ∈ 𝑆 

 
 

 𝑌𝑝,𝑚′ ,𝑚,𝑠,𝑎,𝑡 , 𝑊𝑚′,𝑚,𝑠,𝑎,𝑡 , 

 𝑈𝑚,𝑚′,𝑎,𝑡 , 𝑆𝑆𝑝,𝑝′,𝑠  = 𝐵𝑖𝑛𝑎𝑟𝑦 

∀  𝑝 ∈ 𝑃, 𝑚′ ∈ 𝑀𝑠−1, 𝑎 ∈ 𝐴, 𝑡 ∈ 𝑇 , 𝑚 ∈ 𝑀𝑠, 𝑠 ∈ 𝑆 

 

(30) 

 

Now this model attempts to figure out optimum solution 

through following constraints: 

Constraint (1) states that each travel of one AGV can be 

allocated to one route. Constraint (2) argues that each part 

through each stage can be processed just on one machine. 

Constraint (3) shows loading capacity of each AGV. 

Constraint (4) and (5) state that if certain travel of AGV 

occurs (variable W), the model can decide whether part p be 

loaded on AGV at that travel or not (variable Y). Constraint 

(6) and (7) show binary variable (Y) should take 1 before (PC) 

(part completion time) can take value. In other words, a 

certain part (Y) should be loaded on machine (m) then we can 

expect to have a process completion time (PC). Constraint 

(8) and (9) mention that, load receipt time (variable RT) 

depends on binary variable W (firstly, travel should occur 

then receipt time can take value). Constraint (10) implies that 

𝑡𝑡ℎ  travel of certain AGV can take place, when AGV’s 

𝑡𝑡ℎ − 1  travel has occurred. Constraint (11) proves that 

delivery time (RT) for AGV at its travel (t >1) should be 

equal or greater than sum of receipt time (RT) at pervious 

travel (t-1), return time (BM) from pervious travel to one of 

the machines for loading, loading time of loaded parts on 

AGV (LT) and going time (FM) from one of the machines to 

one of origin machines in next stage. Constraint (12) is to 

some extent identical to constraint (11) but unlike constraint 

(11) it does not calculate interval between two sequential 

travels of certain AGV, constraint (12) considers that receipt 
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time (RT) should be at least equal to sum of completion 

process time of loaded parts on AGV which have been 

processed on pervious machine 

(∑ 𝑃𝐶𝑝,𝑚′′,𝑚′,𝑠−1,𝑎′ ,𝑡′𝑚′′∈𝑀𝑠−2
× 𝑅𝑅𝑅𝑚′′,𝑚′,𝑠−1,𝑎′ ,𝑡′) , going 

time (FM) from pervious machine to origin machine in 

current and loading time of loaded parts on AGV (LT) (we 

used 𝑝′ instead of 𝑝 because maybe loads of certain AGV 

include parts other than p and we should take into account 

their loading times). Constraint (13) points out that process 

completion time (PC) should be at least equal to sum of 

receipt time (RT) and required time for processing certain 

parts ( 𝑃𝑇𝑝,𝑚). Constraint (14) shows each AGV per each 

its travel can return from just one machine to just another one. 

Constraint (15) states that each AGV can start new travel (t 

>1), when return from pervious travel took place. Constraint 

(16) implies that AGV can return from its travel, when that 

travel happened. Constraint (17) represents total parts at last 

stage. Constraint (18) and (19) show process priority for 

parts at a certain machine where parts are from identical parts 

family (𝑓 ∈ 𝐹)  (due to similarity between parts family, 

setup time is eliminated). Constraint (20) and (21) illustrate 

process priority for parts at a certain machine where parts are  

not from identical parts family (𝑓, 𝑓′ ∈ 𝐹 , 𝑓 ≠ 𝑓′)  (parts 

families are different and due to dissimilarity between parts 

family, setup time exists)). Constraints (22) and (23) show  

dependency of both (ET) and (EXT) variables on 

corresponding binary variable (Y) (Part p should be 

permitted to travel to certain machine, then corresponding 

(ET) and (EXT) can take value). Constraint (24) shows 

entrance tardiness of each part at corresponding machine. To 

calculate entrance tardiness (ET), it Subtracts sum of receipt 

time (RT) and processing time ( 𝑃𝑇𝑝,𝑚)  from process 

completion time (PC). Constraint (25) calculates exit 

tardiness of each part after being processed at certain 

machine (time it waits to be allocated to a AGV). To calculate 

exit tardiness (EXT), receipt time of that part in next stage 

(RT) is subtracted from sum of completion process time (PC) 

of that part in present stage, loading time of all parts loaded 

on that carrier AGV to move into next stage (𝐿𝑇𝑝′)  (we 

should consider loading time for not only that part, but also 

all loaded parts) and travel time from present machine to 

origin machine (next stage) (𝐹𝑀𝑚,𝑚′′ ,𝑠+1,𝑎). Constraint (26) 

balances input and output for each part (p) at the machine 

(m). Constraint (27) makes a condition in which both 

tardiness (PT) and (TT) cannot take value but zero because 

waiting for parts is no allowed. Constraint (28) points out 

that (LPCT) should be at least equal to maximum of (PCs) at     

the last machine/machines. Constraints (29) shows 

mentioned variables are positive and constraint (30) limits 

noted variables to binary value. 

  

3. Computational experiment 
  

In this section, the outputs of computational experiments are 

presented to evaluate performance of the model. Due to 

exactness of solutions produced by GAMES software, the 

time it takes is more in comparison with metaheuristics, but 

dissimilar to metaheuristics it produces deterministic 

solutions. We are going to express mentioned example in 

detail which is solved by GAMS software using CPLEX 

solver. 

  

3.1. Depicted instance 

  

Consider a hybrid flow shop line with three stages, four parts, 

three parts families, two AGVs, six stations (one storage and 

five machines), five travels for each AGV and capacity for 

two parts in each travel of AGV. The objective is to minimize 

the makespan and number of travels simultaneously. In this 

example we have one station (storage) in first stage, three 

stations (three machines) in second stage and two stations 

(machines) in third station. In the second stage two machines 

are related and the third one is not related and in third station 

both machines are not related to each other. Parts 1 and 2 can 

be processed on machines 2 (stage 2), 3(stage 2) and 5 (stage 

3), parts 3 and 4 can be processed on machine 4 (stage 2) and 

machine 5 (stage 3). 

 

Table 1 – Binary variables 

 

 

 

 

 

 

Table 2 – Positive variables 

 

 

Table 3 – Objective 

 

 

𝒘𝒎′,𝒎,𝒔,𝒂,𝒕 𝒀𝒑,𝒎′,𝒎,𝒔,𝒂,𝒕 𝑼𝒎,𝒎′,𝒂,𝒕 𝑺𝑺𝒑,𝒑′,𝒔 

 

𝑊1,2,2,1,3

= 1 

𝑌1,1,2,2,1,3 = 1 𝑈5,1,2,2 = 1 𝑆𝑆1,2,2 = 1 

𝑊1,2,2,2,1

= 1 

𝑌2,1,2,2,2,1 = 1 𝑈6,1,1,2 = 1 𝑆𝑆1,2,3 = 1 

𝑊1,4,2,1,1

= 1 

𝑌3,1,4,2,1,1 = 1 𝑈6,2,2,4 = 1 𝑆𝑆1,3,2 = 1 

𝑊1,4,2,2,3

= 1 

𝑌4,1,4,2,2,3 = 1 0 𝑆𝑆1,3,3 = 1 

𝑊2,5,3,1,4

= 1 

𝑌1,2,5,3,1,4 = 1 0 𝑆𝑆1,4,3 = 1 

𝑊2,5,3,2,2

= 1 

𝑌2,2,5,3,2,2 = 1 0 𝑆𝑆2,3,3 = 1 

𝑊4,6,3,1,2

= 1 

𝑌3,4,6,3,1,2 = 1 0 𝑆𝑆2,4,3 = 1 

𝑊4,6,3,2,4

= 1 

𝑌4,4,6,3,3,2 = 1 0 𝑆𝑆4,3,2 = 1 

   𝑆𝑆4,3,3 = 1 
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4.Conclusion 

 

In this research, the hybrid flow shop scheduling with robotic      

processing and AGV-based transportation system is 

considered in which there are related and unrelated parallel 

machines in each stage. A mixed integer linear programming 

(MILP) model is proposed to minimize the makespan and 

total AGV travels. To compute the model, GAMS software 

using CPLEX solver is employed and to better understand 

the solution, we depict all steps of solving problem. As future 

research, limited buffer can be considered for each machine 

within each stage and routing constraints can be applied for 

AGVs to find unoccupied routs. 
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𝑅𝑇1,2,2,1,3

= 8 

𝑃𝐶1,1,2,2,1,3

= 25 
0 0 

𝑅𝑇1,2,2,2,1

= 4 

𝑃𝐶2,1,2,2,2,1

= 8 
0 0 

𝑅𝑇1,4,2,1,1

= 5 

𝑃𝐶3,1,4,2,1,1

= 8 
0 0 
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= 23 

𝑃𝐶4,1,4,2,2,3

= 25 
0 0 

𝑅𝑇2,5,3,1,4

= 28 

𝑃𝐶1,2,5,3,1,4

= 29 
0 0 

𝑅𝑇2,5,3,2,2

= 12 
𝑃𝐶2,2,5,3,2,2

= 14 
0 0 

𝑅𝑇4,6,3,1,2

= 13 

𝑃𝐶3,4,6,3,1,2

= 15 
0 0 

𝑅𝑇4,6,3,2,4

= 30 

𝑃𝐶4,4,6,3,3,2

= 15 
0 0 

LPCT(second part 

of objective) 
Total travel time 
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57 
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