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Abstract   

This paper deals with coordinating supplier development 

programs in a two-echelon supply chain which is 

formulated as a continuous time optimal control model. 

Drawing upon advanced ingredients of differential and 

Poisson geometry, a novel methodology is presented for the 

optimal control problem by reformulating and converting 

the Hamilton-Jacobi-Bellman partial differential equation 

(PDE) to a reduced Hamiltonian system, so that the exact 

optimal solution of the control problem can be obtained, 

instead of numerical estimation. The proposed methodology 

is applied to the problem of coordinating supplier 

development in a supplier-manufacturer supply chain to 

find the exact optimal solution. The analytical solution to 

the problem is obtained based on the proposed method and 

a numerical example is presented to further validate its 

applicability and superiority. The proposed methodology 

can be also applied to control problems in other 

optimization fields. 

 

Keywords:  Optimal control problem, Poisson bracket, 

Hamiltonian system, First integral, Supplier development, 

Supply chain coordination  

 

Introduction  
It is known that strong supply chain relationship is crucial 

for improving operational efficiency and developing 

sustainable competitive advantage [1]. For a manufacturing 

firm, closer relationship with its suppliers enhances 

profitability of both the manufacturer and the suppliers [2].  

In many industries, manufacturing firms develop strategic, 

long-term relationships with their suppliers by 

implementing and supporting supplier development 

programs. The goal is to improve the performance and 

capabilities of the suppliers which, in turn, results in 

improving operational performance in terms of cost, 

quality, delivery, etc. [2-4].  

Despite the potential benefits of supplier development 

programs, they might be unattractive for the suppliers since 

the suppliers might be reluctant to modify their internal 

processes and instead pursue their own objectives [5]. 

Because the success of supplier development program 

depends on mutual recognition and aligned objectives, 

coordination between the supplier and manufacturer is 

required [2, 6].  

In recent years, the subject of supply chain coordination has 

received much attention in the literature (e.g. [7, 8]). It 

deals with making globally optimal supply chain decisions 

that can benefit all the parties involved, instead of 

individual decisions, in order to improve the overall 

performance and efficiency of the supply chain. Various 

mechanisms are used for coordination purposes [9, 10].  

In many situations, the problem of supply chain 

coordination is formulated as a continuous time optimal 

control model with an equation of incomplete Hamiltonian 

system in which the optimal solution should be estimated 

by numerical analysis. This paper presents a novel 

methodology based on differential and Poisson geometry by 

reformulating and converting the original problem to a 

reduced Hamiltonian system. Therefore, the exact solution 

to the problem can be obtained. In order to illustrate 

applicability and superiority of the proposed methodology, 

it is applied to obtain the optimal solution to the problem of 

coordinating supplier development in a two-echelon supply 

chain comprising of a single supplier and single 

manufacturer.  

First, in preliminaries section, we study some geometric 

ingredients which enable us to extend the optimal control 

problem to include more variables and more equations in 
m  by considering the other derivations of the 

Hamiltonian function. In fact, by dynamical programming, 

we can write down an infinitesimal version of the optimal 

control problem as a partial differential equation (PDE), i.e. 

the Hamilton-Jacobi-Bellman PDE. Then we consider the 

Hamiltonian system corresponded to this PDE.  

On the other hand, for a Hamiltonian system there is a 

connection between one–parameter variational symmetry 

groups of the system and first integrals. In Theorem 3 

expressed in notions of first integrals and generalized 

symmetry groups, we prove that the problem for each 
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admissible control can be solved in a reduced Hamiltonian 

system corresponded to Hamilton–Jacobi–Bellman PDE on 

(nonlinear) control problem. Then we solve an example by 

reduction method. Specially, we apply this method to our 

models about coordination of a supplier-manufacturer.  

Note that the use of symmetry groups to effect a reduction 

in order of a Hamiltonian system of ordinary differential 

equations parallels the methods for Euler–Lagrange 

equations, but with the added advantages of an immediate 

geometrical interpretation. In this way the optimal control 

problem with dynamical demand which applying 

Pontryaginn's Maximum principle to corresponding 

Lagrangian system (e.g., in [11]) can be extended to this 

framework.   

  

Preliminaries  
 

Optimal Control problem  

 

We consider the simplest form of the optimal control 

problem as 

,T][t  Uand u(t)

T given)free, (A, )=A, x(T) x(

=f(t,x,u)x subject to

,k(t,x,u)dtJ=
T

0,

0

,

max
0




                                         (1) 

 where U denoted some bounded control set, t , time, x , 

state, and u  as control. Also, another variable )(t=  is 

the costate variable (or auxiliary variable) which will 

emerge in the solution process, by Hamiltonian function, 

H , which is defined as 

u)λ(t)f(t,x,=k(t,x,u)+H(t,x,u,λ)                                          (2) 

For the problem in (1), and with the Hamiltonian defined in 

(2), the maximum principle conditions are 

ondition)ersality c,  (transv
x

H
λ=-

on for x)on of moti,  (equati
λ

H
=x

,T][ t,  for allH(t,x,u,
u













,0)max 

                                 (3) 

where the symbol H
u

max  means that the Hamiltonian is to 

be maximized with respect to u  alone as the choice 

variable and we obtain to a Hamiltonian system. 

Note that we shall deal exclusively with the maximization 

problem in control theory. In this way, the necessary 

conditions for optimization can be stated with more 

specificity and less confusion. In situations where a 

minimization problem is encountered, such as in the sequel, 

it can be always reformulated in the maximization form by 

simply attaching a minus sign to the objective function. 

Now, we study some geometric notions which are needed in 

the sequel. More details can be found in [12]. 

In two following sections, we give only a summary of some 

notions from differential and Poisson geometry to establish 

the main result and to make the paper essentially self-

contained. 

Geometric ingredients 

 

Preliminaries of differential geometry 

As the notions of [13] or [14], we consider a m -

dimensional manifold which defined as a set M , together 

with a countable coordinate charts MU  and one–to–

one local coordinate maps  VU :  onto connected 

open subsets 
mV  , which satisfy the following 

properties: 

The coordinated charts cover M . On the overlap of any 

pair of coordinate charts  UU   the composite map 

)()(:-1
  UUUU   , is a smooth 

function. If Ux , Ux ~  are distinct points of M , then, 

there exist open subsets VW  , VW 
~

, with 

Wx )( , Wx
~

)~(  and )()( WW    is empty set. 

Suppose   is a smooth curve on a manifold M , 

parameterized by MI : , where I  is a subinterval of

 . At each point of   the curve has a tangent vector 

)γ,...,γ=(dtd=γ m


1 . The tangent space to M  at x , 

denoted by xTM | , is an m –dimensional vector space, with 

a basis  mxx  ,...,1  in the given local coordinates. 

The integral curve of a vector field xx TM||v 


is a smooth 

parameterized curve )(tx=γ  whose tangent vector at any 

point coincides with the value of v  at the same point 

γ(t)|vγ(t)=


  for all t .  

If v


 is a vector field, we denote the parameterized maximal 

integral curve passing through x  in M by ),( xt named as 

the flow generated by v


or a one–parameter group of 

transformations and the vector field v


 is called the 

infinitesimal generator of the action. There is a one–to–one 

correspondence between local one–parameter groups of 

transformations and their infinitesimal generators. 

For computation of the one–parameter group generated by a 

given vector field v


 we refer to as exponentiation of the 

vector field Φ(t,x))xv(t 


exp  which for all Mx   

,exp exp )xv(t)x]=v|v(t[
dt

d



                                               (4)                           

If  

i

ii ξ(x)ξ=v


and Mf :  a smooth function, 

then using the chain rule and (4) we find 

)(x)].v(t(f)[v=

)x)v(t(
x

f
)x)v(tξ()x)=v(tf(

dt

d
m

i= i




exp

expexpexp

1

 



                (5) 

For a smooth real–valued function ),...,xf(x)=f(x r1 of 

r independent variables, there are 









k

r+k-
rk

1
, different 

k –th order partial derivatives of f . We employ the multi–
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index notation 
kjjj

k xxxxf=xf  ...)()(
21

, for these 

derivatives. More generally, if UXf : is a smooth 

function from 
rX   to 

sU  , so 

))(),...,(()( 1 xfxf=xu=f s , there are krs.  numbers 

)(xf=u JJ 
   needed to represent all the different k –th 

order derivatives of the components of f at a point x . We 

let krs
kU

.
  be the Euclidean space of this dimension, 

endowed with coordinates 
Ju  corresponding to  1,...,sα= , 

and all multi–indices ),...,( 1 kjjJ=  of order k , designed so 

as to represent the above derivatives. Furthermore, 

n
n UU=UU  ...1

)(  is the Cartesian product space, 

whose coordinates represent all the derivatives of functions 

)(xu=f  of all orders from 0  to n . A typical point in 
)(nU  

will be denoted by 
)(nu . 

We consider the n –th prolongation of  a smooth function 

)(xu=f , UXf : , i.e., )()()( xf=pru nn  which is 

defined by the equations )(xf=u JJ 
  . Furthermore, we 

consider a system of n –th order differential equations in r  

independent and s  dependent variables which given as a 

system of equations 0),( =ux n
 , for l= ,...,1 , involving 

),...,( 1 rxxx= , ),...,( 1 suuu= and the derivatives of u  with 

respect to x  up to order n . For a vector field v


 on 

UXM   the n –th prolongation of v


, denoted vpr n )( , 

will be a vector field on the n –jet space )(nM , and is 

defined to be the infinitesimal generator of the 

corresponding prolonged one–parameter group 

)],)([exp(|)][exp( )()(
0

)( nn
t=

n uxvtprdtd=vtpr


, for any 

)()( ),( nn Mux  . 

Let ),( )(nuxP  be a smooth function of x , u  and 

derivatives of u  up to order n , defined on an open subset 
)()( nn UXM  . The total derivative of P  with respect 

to ix  is the unique smooth function 







 f(x))

(n)
P(x,pr

i
xf(x))=

)(n+
P(x,pr

i
D

1
 defined on 

)(n+
M

1
. We can show that for ),( )(nuxP , the i –th total 

derivative of P  has the general form 









s

= J J

iJ
i

i
u

P
u+

x

P
P=D

1

, ,





                                            (6) 

where, for ),...,( 1 kjjJ= , 

.
...

1

1

,

kjji

k+

i

J
iJ

xxx

u
=

x

u
=u







 
                                                 (7)            

In (6), the sum is over all J 's of order 0 # nJ  , where 

n  is the highest order derivative appearing in P . For a 

vector field   

r

i=

s

=

ii uux+xux=v

1 1

),(),(






on an 

open subset UXM  , the n –th prolongation of v


 is 

the vector field  

s

= J

J
nJn uux+v=vpr

1

)()( ),(







,  

defined on the corresponding jet space 
)()( nn UXM  . 

The coefficient functions J
  of vpr n )(  are given by the 

formula  
r

i=

r

i=

iJiiiJ
nJ u+u-=Dux

1 1

,
)( )(),( 

  , where of 

(9) we have ii xu=u  
 , and iJiJ xu=u  

, .  

A generalized vector field will be a (formal) expression of 

the form   

r

i=

s

=

ii uu+xuv=

1 1

][][



 in which i  

and   are smooth differential functions, ),(][ )(n
ii ux=u   

and ),(][ )(
  ux=u , too. 

Note. We can show that a generalized vector field v


 is a 

generalized infinitesimal symmetry of a system of 

differential equations 

,,...,1     ,0),(][ )( l==ux=u n                                      (8) 

if and only if 

,,...,1   ,0][ l==vpr 


                                                      (9)                 

for every smooth solution )(xu=f .  

 

Preliminaries of Poisson geometry 

As notions of [15] or [16] , we consider a manifold M with 

a Poisson structure  .,.  on M  which is an operation that 

assigns a smooth real–valued function  GF ,  on M  to 

each pair GF ,  of smooth, real–valued functions, with the 

basic properties of bilinearity, skew–symmetry, Jacobi 

Identity and Leibniz' rule. 

Let M  be a Poisson manifold and MH :  a smooth 

function. The Hamiltonian vector field associated with H  

is the unique smooth vector field Hv̂  on M  satisfying 

   FH=-HF=FvH ,,)(ˆ . In local coordinates 

),...,( 1 mxxx=  on M , the associated Hamiltonian vector 

field will be of the general form  

m

i=

iiH xx=v

1

)( , where 

the coefficient functions )(xi , which depend on H , are to 

be determined . Then we have 

    





i

m

i=

i
x

F
Hx=HF

1

,,                                                    (10) 

Using the slew–symmetry of the Poisson bracket, and (10) 

we obtain the basic formula 

    ,,,

1 1 ji

m

i=

m

j=

ji
x

H

x

F
xx=HF








                                     (11)    

for the Poisson bracket. We assemble the structure functions 

of the Poisson manifold M  relative to the given local 

coordinates,  ji
ij xx=xJ ,)(  for mj=i ,...,1,  into a skew–
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symmetric mm  structure matrix )(xJ  of M . Using (11) 

the Hamiltonian vector field associated with )(xH  has the 

form 

  




















m

i=

m

j= ij

ij
H

xx

H
xJ=v

1 1

)(


                                          (12) 

Therefore, in the given coordinate chart, Hamilton's 

equations take the form 

 )()( xHx=J
dt

dx
                                                             (13) 

For example, in the manifold 
nM= 2  with coordinates 

),...,,,...,(),( 11 nn qqpp=qp , if ),( qpF  and ),( qpG  are 

smooth functions, we define their Poisson bracket to be the 

function 

   























n

i= iiii q

G

p

F
-

p

G

q

F
=GF

1

,                                      (14) 

In the case of standard bracket (14), as in equation (11), the 

Hamiltonian vector field corresponding to ),( qpH  is 

  

n

i=

iiiiH pqH-qpH=v

1


. The corresponding 

flow is obtained by integrating the system of ordinary 

differential equations 

,1,...,n,   i=
q

H
=-

dt

dp
,   

p

H
=

dt

dq

i

i

i

i








                                (15) 

which are Hamilton's equations in this case. More concepts 

can be found in [15]. 

 

Main acquirements of Poisson and differential ingredients 

from before two last elementary section we conclude that: 

Attainment 1. If v


 be the Hamiltonian vector field 

determining (12), by (5), for any solution to Hamiltonian  

equations )),()(()),(()),(( ttxv+ttxt=dtttxd H 


 , 

we have 0=dtd  along solutions if and only if  

  ,0, =H+
t







                                                               (16)       

holds everywhere. Thus, a function ),( tx  is a first 

integral for the Hamiltonian system (13) if and only if (16) 

holds for all tx, .  

Attainment 2. If ),( tx  be a first integral of a Hamiltonian 

system, then, the Hamiltonian vector field v


 determined 

by  , as in equation (12), generates a one–parameter 

symmetry group of the system. This means that the 

Hamiltonian vector field is an infinitesimal generator (in 

evolutionary form) of a one–parameter group of 

transformations acting on an open set of the space of 

independent and dependent variables for the system which 

are invariant under the element of the group. Then, by (8) 

and (9), the vector field uH xuxt==vv  ),,(


 is a 

generalized symmetry of the Hamilton-Jacobi equation if 

and only if ),,( qpt  is a first integral of Hamilton's 

equations.    

Attainment 3. For Hamiltonian systems, one–parameter 

Hamiltonian symmetry groups whose infinitesimal 

generators are Hamiltonian vector fields arise from 

variational symmetry groups. The use of symmetry groups 

to effect a reduction in order of a Hamiltonian system of 

ordinary differential equations is the main topic of our 

methodology. By notions of before sections, we have  

Reduction Theorem 1. Suppose 0v


 generates a 

Hamiltonian symmetry group of the Hamiltonian system 

 H=Jx   corresponding to the time–independent first 

integral )(x . Then, there is a reduced Hamiltonian system 

involving two fewer variables with the property that every 

solution of the original system can be determined using a 

single quadrature from those of the reduced system [13].         

Reduction Theorem 2. Let  H=Jx   be a Hamiltonian 

system in which )(xh  does not depend on t . Then, there is 

a reduced, time–dependent Hamiltonian system in two 

fewer variables, from whose solutions those of the original 

system can be found by quadrature [13].           

 

Proposed methodology 

 

We study the possibility of optimally controlling the 

solution (.)x


 of the ordinary differential equation 





=xtx

Tstssx=ftx

)(

)(    )),(),(()(



 

                                 (17)                         

Here dtd= , 0T  is a fixed terminal time, and 
nx   

is a given initial point, taken on by our solution (.)x


at the 

starting time 0t . At later times Tst  , (.)x


evolves 

according to the ODE, where 
nn Af :  is a given 

bounded, Lipchitz continuous function, and A  is some 

given compact subset of, say, 
m . The function (.)


 

appearing (17) is a control, that is, some appropriate 

scheme for adjusting parameters from the set A as time 

evolves, thereby affecting the dynamics of the system 

modeled by (17). For more details refer to [17]. 

Let  surable(.) is meaαA|,T]:[αΑ:=


0 , the set of 

admissible controls. Our goal is to find a control (.)


 

which optimally steers the system. For this purpose, given 
nx   and Tt 0 , let us define for each admissible 

control (.)


 the corresponding cost 

,))(())(),((:(.)][, 
T

t
tx Txds+gssxk=c


                          (18) 

where (.)(.) (.)


x=x  solves the ODE (20) and 

 Ak n: , ng :  are given functions, k  is 

the running cost per unit time and g  is the terminal cost. 

Now, we can express our main results: 

Theorem 3. (Reduced control problem) We can solve the 

optimal problem (17) of the cost function (18) for each 

admissible control (.)


, as the above notions, in a 

reduced Hamiltonian system involving fewer variables. 
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Proof. The method of dynamic programming investigates 

the above problem by turning attention to the value function 
n

tx xc=txu 


(.)],[inf:),( ,
(.)





  Tt 0, . For each 

0  so small that Tt+  , we have 

,)),(())(),((inf),(
(.) 














t+

t
t+t+xds+ussxk=txu


          (19) 

where (.)(.) (.)


x=x  solves the ODE (17) for the control 

(.)


. We can write down as a PDE an infinitesimal version 

of the optimality conditions (19). The value function  is 

the unique viscosity solution of this terminal-value problem 

for the Hamilton-Jacobi-Bellman equation: 

 

 ,t=Tu=g on

)T,(in,=)a,x(Du+k).a,x(fmin+u

n

n

Aa
t






  

0    0
           (20) 

 where ),...,(
1 nxxx uuu=Du=D . In similar way to problem 

(1) with Hamiltonian (2), the Hamilton-Jacobi-Bellman 

PDE (20) has the form  in+H(Du,x)=ut 0
 

),0( Tn  , for 

the Hamiltonian 

 ,),().,(min:),( axp+kaxf=xpH
a 

                                (21) 

for 
nxp , , where p  is the name of the variable for 

which we substitute the gradient Du  in the PDE. The 

corresponding to a Hamiltonian system, as in equation (15), 

is the Hamilton-Jacobi partial differential equation 

0),,( =txxu+Htu  . Note that the maximum principle 

condition mentioned in (3) is a simplified version of this 

equation. Now, we can apply Attainments 1-3, step by step, 

to this Hamiltonian system. Then of Reduction Theorems 1 

and 2, the knowledge of first integrals allows us to reduce 

the order of the system. The structure of the proof 

summarized in Figure 1. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 – Procedure of the proposed methodology 

 

Solving a control problem by the proposed method 

 

We consider the Hamilton-Jacobi-Bellman equation of 

optimal control problem (17) in ),0(2 T , as the 

  0))(().,(min 2
2121 =xxtDu+xutxut=+u

Aa
t 


, for 

],1[ TA=  and arbitrary 1T . Then we have 









0)()(

2

1 2
212

2

2

2
1

2

=-xx+
x

u
+

x

u
+ut                                       (22) 

Step 1  (Hamiltonian system). Let 
4M=  with canonical 

Poisson bracket, then of equation (21) applied to (22), the 

corresponded Hamiltonian function is of the form 

2
21

2
2

2
12121 )(

2

1
-xx)++p(p)=,x,x,pH(p                             (23)                          

 By (15) the corresponding Hamiltonian system is 

).-x(x=
dt

dp
),  -x(x=-

dt

dp
,  =p

dt

dx
,  =p

dt

dx
21

2
21

1
2

2
1

1 22       (24) 

Step 2 (symmetry groups or first integrals). From (23) we 

find that the system admits an obvious translational 

invariance 
21 xx +=v 


; the corresponding first integral is 

21+pp . 

Step 3 (reduction). According to Theorem 3, we introduce 

new coordinates 211121 -x, r=x, y=p, x=x+pp=p  which 

straighten out x=v 


. In these variables, the Hamiltonian 

function is  

,
2

1
),,( 222 +rp-py+=yrypH                                          (25) 

and  
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
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. 

Further, the Hamiltonian system is splitted into 

.2  ,2

,  ,0

y-p=
y

H
=

dt

dr
r=-

r

H
-

x

H
=-

dt

dy

=y
y

H
+

p

H
=

dt

dx
=

x

H
=-

dt

dp

























                            (26)             

Step 4 (solving of reduction system). The solution to the 

first pair,  21 )(, dt+ctyx=p=c ( 21 ,cc constant) can be 

determined from the solutions to the second pair (26). 

These form a reduced Hamiltonian system relative to the 

reduced Poisson bracket   ryyr HF-HF=HF
~~~~~

,
~

 for functions 

of y  and r , with the Hamiltonian (25) obtained by fixing 

1p=c .  

For the explicit integration of (26) and, then, the exact 

solution of the original system (24), we use again the proof 

of Theorem 3; by setting 2)41(),( p+=ryH  , we find 

222 )41()()21( p+=r+Vp-py+y   or 
22)21( -rpy=   . 

In this way, we recover the solution just by integrating 

222 -ry-p=dtdr  and we reach to exact solution 

Control problem 

Dynamic 
programming 

Hamilton-Jacobi-

Bellman PDE 

Hamiltonian 

system 

Generalized symmetry First integrals 

Reduction 

Reduced Hamiltonian system 
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 dt=-rdr 22  or
 

22)()21( -rt-cpy=  . 

 

Application of the proposed methodology to 

coordinate supplier development 
 

Problem description and formulation 

 

We consider the problem of coordinating supplier 

development programs in a two-echelon supply chain 

which is presented in Proch et al. [2]. The supply chain 

comprises of a single supplier and a single manufacturer in 

which the manufacturer assembles components from the 

supplier and sells the final product to the market. The goal 

is to find the optimal decision of supplier development 

investment.  

A centralized decision-making process is assumed and the 

supply chain is considered as an integrated system in which 

all parameters, including the optimal amount of effort 

invested in supplier development, are simultaneously 

chosen. This decision-making process ensures system 

efficiency and opts for the optimum level of supplier 

development, i.e. maximizes the total profit of the supply 

chain. The variables and parameters for this model are 

summarized in Table 1. 

 

Table 1 – Description of parameters and variables  

Parameters/ 

Variables 

Description 

a  Prohibitive price (e.g. maximum 

willingness to pay) 

b  Price elasticity of the commodity 

Mc  Manufacturer's unit production costs 

SDc  Supply costs per unit charged by the 

supplier 

0c  Supplier's unit production cost at the 

begininig of the contract period 

)(tx  The mesurement of the efforts 

invested in the supplier development 
m  The supplier learning rate 

1],1,0[

;
ln

)1ln(

)(

)(

0

 




m=

x=cxc

xc

m
S

S

 

Supplier production cost 

r  The supplier fixed profit margin 

)(tu  The effort at time t  

)(t  Capicity limit of )(tu  (resource 

availability in terms of time, man 

power or budget) 

 

The profit function ),,0([: 1 TLJ SC )  of the set of 

measurable functions and the model of efforts invested in 

the supplier development is defined by the following 

problem  

.=)=xx(,ω[,T)=u;  u:[x subject to

u(t)dt,-c
b

-r(t))x-c(a-c
:=J

T

SD

m
MSC

10  ),00

4

0

0

22
0






             (27) 

The centralized collaboration strategy should be determined 

such that the accumulated profit function (27) is 

maximized. By using the maximum principle (3) applied to 

the optimal control problem (27) with the Hamiltonian 

function

),()()(
4

))((
),,,(

22
0 tut+tu-c

b

-rtx-ca-c
=uxtH SD

m
M      (28)            

the switching time 
t  can be obtained by sulution 

0)())(),(,( =t+=-cttuxuH SD  . Then, as examined in 

[2], 
t can be evaluated by numerical analysis from the 

equation 

SD

m
M

m

=c-Tt
b

t+-ca-ct+mc
)(

2

))1(()1( 0
1

0 
 

.            (29) 

More details of the above fromulation are given in [2]. 

 

Application of the proposed methodology 

 

Optimal problem (27) is re the most known problems of the 

supplier-manufacturer relationship which result to an 

equation with different parameters for switching time 

(equation (29)) and then optimal control function which can 

be evaluated just by numerical analysis. In fact we have 

only one equation with different parameters (equation (29)).  

On the other hand, the case where the Hamiltonian H  is 

linear in control u  is of special interest. For one thing, it is 

an especially simple situation to handle when H  plots 

against u  as either a positively sloped or a negatively 

sloped straight line, since the optimal control is then always 

to be found at a boundary of u . The only task is to 

determine which boundary. More importantly, this case 

serves to highlight how a thorny situation in the calculus of 

variations has now become easily manageable in optimal 

control theory.  

But, this simple approach apparently results in the 

elimination of some equations of the Hamiltonian system in 

supplier manufacturer coordination. For example because 

an accurate determination of the capacity limit )(t=  of 

)(tu  from the problem is not critical to our discussion, an 

accurate determination of it is exogenously assessed to be 

feasible to the problem.  

However in our new approach, we consider all of functions 

and parameters in the system with their actual rule. Thus we 

can insert more variables in models of supply chain 

management. This can be modeled by considering some 

variables as a multiple functions with their rate of charges 

and then the Hamiltonian function as a function of all these 

unknown and their derivatives. In this way, we confront 

with possibly nonlinear optimal control problems which 

result to the systems of fully Hamiltonian equations with 

equations as equal as variables. Then, by Theorem 3 these 

complicated systems can be reduced Hamiltonian systems 

with exact solutions. The supply chain corresponded to 
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these models may be modeled for the most exact supplier-

manufacturer relationship. 

 

Solution method 

From equation (27), we can rewrite the corresponding 

Hamiltonian function (28) as the 

),()()())(((),,,( tut+tu-c-c-ctdp=dduxH=H SDSCM 
 
(30) 

with the production quantity b-ca-c=td SCM 2)(  and the 

price distribution SCM+c=a-bd=a+ctd=pdp ))(()( ; 

m
SC x=r+cc 0 . Then, we have the Hamiltonian system 

, ,)(

, ,
4

))()((2 0
1

0

d=+=-c
u

H

dt

du
-bd=--ca-bd-cd=

d

H

x=
dt

dx
=u=

H

dt

d
=-

b

tx-ca-ctxmc-
=

x

H

SDSCM

m
M

m-



























        

which can be written as  

,
2

))()((
)( 0

1
0

b

tx-ca-ctxmc
=t

m
M

m-

                                    (31) 

),()( t+=ctd SD                                                                 (32) 

+bd+c-a+bd+cd=tu SCM )()(                                          (33) 

From equation (31) we have 

)),()((
2

))()()((
2

)(

2

))()((
)()(

1212

2
0

11
0

0
1

0

t-ItI
b

mc
+

t-ItIa-c
b

mc
-t=

ds
b

sx-ca-csxmc
-t=t

m-m-

m-m-M

t

t

m
M

m-














                (34) 

where 
s

m
m dkkx=sI

0
)()( . Also, from equation (32) 





t

t
SD

t

t
SD dss-ct-t-t=dds-cs-t=dtd )()()())(()()(      

(35) 

Then, substituting this to equation (33) results in 







))()((
2

))((
2

1

))()((
4

))()()((
4

)()(

0

1212

2
0

11
0

t-ItI
c

+-tt-ra-c-

t-ItI
b

mc
+

t-ItI+r-a+c
b

mc
+t=utu

mmM

m-m-

m-m-M

                (36) 

Finally, for t+=tx 1)( , ],0[  tt , as before of equation 

(34) we conclude  

),)1()1((
4

))1()1((
2

)(
)()(

22
2

0

0

mm

mmM

t+-t+
b

c
+

t+-t+
b

a-cc
-t=t













                (37) 

also, of (35) 

),)1()1((
)12(4

)()1((
4

))1()1((
)1(2

)(

)()1(
2

)(
)()(

1212

2

2
0

2
2

0

11

2

0

0

m+m+

m

mmM

mM

t+-t+
m+b

c
+

-ttt+
b

c
-

t+-t+
m+b

a-cc
-

-ttt+
b

a-cc
+t=dtd





















                 (38) 

and finally (36) result in 







))1()1((
)1(2

))((
2

1

))1()1((
)1(8

))1()1)(((
4

)()(

110

2222
2

0

0

m+m+
M

m+m+

mm
M

t+-t+
m+

c
+-tt-ra-c-

t+-t+
bm+

mc
+

t+-t++r-a+c
b

c
+t=utu










(39) 

On the other hand, uH=upH+p-cSD )( . Then, its 

first integral is SDc-pu= 22 2  and (30) reduced to 

 22 2 +p)(-cc-p)-c(p(d(t))-cH(p,x,d)=d SDSDSCM  . 

 

Numerical example 

 

In order to further illustrate applicability and superiority of 

the proposed methodology, a numerical example is 

presented using the data given in Proch et al. [2]. The 

parameter values are represented in Table 2. 

 

Table 2 - Parameter values for numerical analysis (adopted 

from Proch et al. [2]) 

T  a  b  Mc  0c  r  SDc    m  

60 200 0.01 70 100 15 100000 1 1.0-  

 

For the numerical analysis of the problem using the given 

parameter values, of equation (37) we obtain 

),)1()1((
4

))1()1((
2

)(
)()(

220

0

mm

mmM

t+-T+
b

c
+

t+-T+
b

a-cc
-T=t













 

since SD=ct )(   , then 

,120601
040

100

110601
020

70200100
0100000

20

10

))+t-(.-)+(
.

+

))+t(.-)+((
.

)-(
-=

.-

.-





 

which results 844.9=t  . By substituting this in equation 

(37) we have 

,)1(250000)1(065000025655)( 2.01.0 -- +t-+t-=-t  

and since 65.193482))(()( 0 =-bxrc-a-c=td
m

M


 then, 

from equation (38) we conclude 
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))1(73.6(312500)844.9(71.155203

)1(54.8(22.722222)844.9(73.51214665.19348)(

8.0

9.0

+t-+-t-

+t---t+=-td
  

Also, from equation (39) we obtain 





).+t)-(.(.-t)+.(.-

).+t)-((.)+.-+t)-(.()-u(t)=u(t

9015485555889557

811738813888101780287500
 

The approximate value of 
t which obtained numerically in 

Proch et al. [2] is 9.212. The advantage of our approach is 

that the exact value of the switching time which calculated 

analytically in our paper is 9.844 and it is certainly better 

result for our maximization control problem. Furthermore, 

the equations of )(t , )(td  and )(tu  are obtained; while, 

in the original problem, an accurate determination of these 

variables has been exogenously assessed to be feasible or 

they should be approximately determined. 

    

Conclusions 
 

In this paper, a novel methodology was presented to find 

the exact optimal solution of the general control problem by 

developing a reformulation based on differential and 

Poisson geometry. For this purpose, we applied geometric 

notions about symmetric groups and first integrals to reduce 

the order of the Hamiltonian system. The proposed method 

was applied to supply chain coordination problem with the 

objective of finding the optimal decision of supplier 

development investment. We calculated the exact optimal 

solution and the optimum switching time for corresponding 

coordination problem of a supplier-manufacturer supply 

chain.  

The main advantage of the proposed methodology is that it 

outperforms the numerical estimation approach since it 

provides the analytic solution of the problem and, thus, it 

yields better results than those obtained through numerical 

estimation. The proposed methodology can be successfully 

applied to the control problems in other optimization fields.   
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