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Abstract   

  

This paper addresses a biobjective version of the single 

allocation star p-hub location problem which has many 

applications in transportation and telecommunications 

network design. The first objective is the median objective 

trying to minimize the total transportation costs, whereas the 

second objective is the center objective which aims at 

minimizing the maximum distance between origin-

destination pairs. A mathematical formulation is proposed 

for the problem and the two objectives are aggregated using 

the weighting method. The proposed mathematical model is 

then solved using a standard optimization package and the 

computational results are discussed. The conducted 

numerical experiments show that the proposed mathematical 

model is efficient enough to obtain the optimal solutions in 

reasonable time.   

  

Keywords: star hub location problem, multi-objective 

optimization, p-hub median, p-hub center, mathematical 

programming. 

 

1. Introduction 

Hubs are special facilities that serve as switching, 

transshipment and sorting points in many-to-many 

distribution systems. The hub location problem is concerned 

with locating hub facilities and allocating demand nodes to 

hubs in order to route the traffic between origin-destination 

(O/D) pairs [1]. Regarding the way the non-hub nodes are 

allocated to the hub nodes, there are two types of allocations: 

single allocation and multiple allocation. In single allocation 

networks, all the incoming/outgoing traffic to/from a non-

hub node is routed through a single hub, whereas in multiple 

allocation networks, each non-hub node can receive and send 

flow through more than one hub. 

In this paper, we address the biobjective single allocation star 

p-hub location which has numerous applications in 

telecommunications. We take both cost based and service 

based criteria into account by using median and center 

objectives, respectively. 

Assume that there is a set of demand points and each of these 

points are going to communicate with all others. The 

communication is done by sending/receiving flows via some 

intermediate points called hub facilities. There is a fixed 

central hub and we want to locate p additional hubs from 

among the user nodes so that the O/D flows can be routed via 

these hubs efficiently. Each hub is connected by a direct link 

to the central hub and each remaining non-hub node is 

connected to exactly one hub (single allocation protocol). In 

the resulting network, the sub-network connecting the hub 

facilities (the backbone network) is a star network and 

therefore the final configuration is called a star hub network. 

A typical star hub network is shown in figure 1. In this figure, 

the large circle represents the central hub, whereas the 

triangles and the small circles represent the hubs and demand 

points, respectively.  

 
Figure 1- A typical of star hub network 

The two objectives used in this paper are the median and 

center objectives which are widely studied in the literature of 

facility location. The p-hub median problem focuses on 

economic aspects of the network, whereas the p-hub center 

problem is more sensitive on the service level aspects of the 

network. The former tries to minimize the total 
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transportation costs in the network, while the latter aims at 

minimizing the maximum distance between all the O/D pairs 

within the network. The application of p-hub center problem 

is to minimize the maximum travel time (or distance) 

between any O/D pair by placing p hubs in a network and 

allocating non-hub nodes to hub nodes. The p-hub center 

problem is important for time-sensitive or guaranteed time 

distribution systems, such as express mail services and 

emergency services. In these systems, the maximum travel 

time represents the best time guarantee that can be offered to 

all customers. To be competitive, it is important that this 

value is the lowest [2].  

The basic difference between single and multi-objective 

optimization problems is the number of the objective 

functions to be optimized simultaneously. A multi-objective 

linear problem (MOLP) can be described as follows: 

1 2
min   [ ( ), ( ),..., ( )]

. .     

K
f x f x f x

s t x S
 

where K is the number of objectives, fi(x) is the ith objective 

function (i = 1, 2, . . . , K) and S is the feasible region [3]. So 

far several methods have been developed for solving the 

multi-objective optimization problems. One of the well-

known methods is to combine different objectives as a single 

objective by multiplying each objective value with a special 

weight. However, since different objectives normally have 

different measurement units, their values must be normalized 

before being added to each other. We use this method in our 

research and since both of our objectives are of minimization 

type, we normalize each objective by dividing it to its best 

possible value. 

Application of multi-objective models is popular in hub 

location problems because there is usual conflict between the 

quality and the cost of the solutions. In this paper, we 

introduce a new bi-objective model to deal with the 

limitations of star p-hub center and star p-hub median 

problem. The use of proposed model allows the decision 

maker to choose the favorite solution among the optimal 

solutions obtained by the model with considering different 

combination of weights for the objective functions. To the 

best of our knowledge, the biobjective star p-hub location 

problem has not been studied before.  

The remainder of this paper is organized as follows. The next 

section briefly reviews the relevant literature to the problem. 

In Section 3, we will present the mathematical formulation 

for the problem. Computational experiments and 

corresponding results using CAB data set are presented in 

section 4. Finally, some concluding remarks and directions 

for future works are given in section 5. 

 

2. Background 

Over the past decades, the hub location problem has attracted 

growing attention form the operations re3search society and 

has successfully been applied in several areas such as freight 

and passenger transportation, telecommunication, supply 

chain management, etc.  

There is a wide range of mathematical programming models 

in the field of hub location and several different objective 

functions have been used to make such models suitable for 

multiple applications. Campbell [4] proposed linear integer 

programming formulations for different versions of the HLP 

such as p-hub median problem, the uncapacitated hub 

location problem, p-hub center problem, and hub covering 

problem. For more details on HLP and recent advances in 

this field, the interested readers are referred to surveys [1], 

[5], and [6]. 

Design of star-type or hierarchical networks has become 

popular since they have many applications in transportation 

and telecommunications network design. Some of the related 

works are summarized as follows. 

Chung et al. [7] addressed the design of a two-level 

hierarchical structure where the embedded backbone 

network was full-meshed, whereas the local networks 

attached to it were of star type. They formulated the problem 

as a quadratic zero-one programming model, and also 

linearized the model as a variant of the well-established 

uncapacitated facility location problem. 

Helme and Magnanti [8] considered the problem of 

designing a star/star satellite communication network. They 

formulated this problem as a zero-one quadratic facility 

location problem (FLP) and transformed it into an equivalent 

zero-one integer linear program. Computational results with 

a branch and bound algorithm and greedy heuristics based on 

real data were reported.  

A more general star hub location problem was studied by 

Chardaire et al. [9] in which each demand node is connected 

to a first level hub which is connected to a second level hub 

which is connected to a central hub They did not consider the 

traffic flows and fixed costs associated with connections and 

installing facilities were minimized. They presented two 

integer programming formulations and a simulated 

annealing algorithm for solving the problem.  

Labbe and Yaman [10] tackled the star hub location problem 

for a telecommunication network. They did not assumed a 

fixed number of hubs but rather, this number was an 

endogenous decision made by the model. Two formulations 

were presented and a heuristic based on Lagrangian 

relaxation were developed. In another work, Yaman [11] 

studied the star p-hub median problem with modular arc 

capacities in which links were installed on the arcs of the 

network to route the traffic. The author proposed two 

formulations and a heuristic algorithm based on Lagrangian 

relaxation and local search to solve the problem. 

Alumur et al. [12] addressed a hierarchical multimodal hub 

location problem with time-definite deliveries. They 

proposed an MIP formulation and solved it efficiently to 

optimality using the commercial solver CPLEX. Recently, 

Yaman and Elloumi [13] proposed several mathematical 

models for the star p-hub center problem and star p-hub 

median problem with bounded path lengths. They used some 

linearization methods to linearize their models and showed 

the efficiency of their models using extensive numerical 

experiments. 
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3. Mathematical Formulation 

Let G = (N0, E) be a graph in which N0 = N {0} is the set 

of nodes and E is the set of edges (E ⊆ N0 × N0). The node 0 

is assumed to be a fixed central hub. Assume that all nodes 

in the set N are candidate for opening hubs. Also, for all i, j 

∈ N, let wij and cij denote respectively the amount of flow 

originated at node i and destined to node j, and the 

transportation cost of a unit flow from node i to node j. Also, 

let cj0 denote the unit transportation cost between node j and 

the central hub 0. We also assume that Oi and Di represent 

respectively the total output flow and total input flow to and 

from node i, i.e.: 

 

i ij

j N

i ji

j N

O w

D w












 

 

We aim at locating p hubs in the set of nodes N in such a way 

that the two objective functions reach a satisfactory level. 

The two objectives used in this paper are the median and 

center objectives which are widely studied in the literature of 

facility location. The p-hub median problem focuses on 

economic aspects of the network, whereas the p-hub center 

problem is more sensitive on the service level aspects of the 

network. The former tries to minimize the total 

transportation costs in the network, while the latter aims at 

minimizing the maximum distance between all the O/D pairs 

within the network. The following two sets of binary 

decision variables are used in our model: 
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Based on the notations and variables defined above, the 

mathematical model for the biobjective star p-hub location 

problem can be written as follows: 

 

1 2
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, {0,1}ik ijkx y   , , : , ,i j k i j i k j k     (10) 

 

The objective function (1) minimize the weighted sum of the 

normalized values of the two main objectives. (2) and (3) 

calculate the exact values of the median and center objectives, 

respectively. Constraints (4) ensure that each demand node 

is assigned to exactly one hub node.  Constraint (5) sets the 

number of installed hubs to p hubs. Constraints (6) ensure 

that nodes can only be assigned to hub nodes. Constraints (7) 

and (8) define the relationship between the binary decision 

variables. Constraint (9) calculates the maximum distance 

between all the O/D pairs in the network. Finally, (10) is the 

standard domain constraints for the decision variables. 

 

4. Numerical Experiments 

In order to test the efficiency of the proposed mathematical 

model, we use the CAB data set which is introduced by 

O'Kelly [14]. The CAB data set is based on the airline 

passenger interactions between 25 US cities in 1970 

evaluated by the Civil Aeronautics Board. This data set has 

been used by most of the hub location researchers in the 

literature. We use four different values as the number of hubs 

to be opened in the network (p=2,3,4,5). 

The proposed mathematical model is coded in GAMS and 

solved using CPLEX solver. All the experiments have been 

run on a computer with Intel(R) Core(TM) i7-4500U CPU of 

2.0 GHz and 8 GB of RAM, using the Microsoft Windows 8 

operating system. 

We first solved each problem instance with respect to both 

the objective functions (median and center) separately to 

obtain the best possible vales for these objectives (
*

1Z  and 

*

2Z  ). The results are shown in Table 1. The first column 
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shows the number of hubs which are going to be opened. The 

second column show the type of objective which is 

considered in solving the problem, whereas the third column 

presents the optimal value for the corresponding optimal 

solution. The last column shows the nodes that are selected 

as hub in the optimal solution. 

 

Table 1- Computational results with separate objectives 

p Objective Optimum Hubs 

2 Z1 1532.03 5,19 

Z2 3046.83 11,21 

3 Z1 1546.37 8,19,20 

Z2 3047.24 5,11,21 

4 Z1 1562.94 8,13,19,20 

Z2 3073.44 5,11,13,21 

5 Z1 1567.26 7,8,10,19,20 

Z2 3074.69 4,5,11,13,21 

 

As can be seen from the above table, solving the problem 

with respect to the two objectives result in completely 

different solutions regarding the opened hubs. Only in one of 

the case (p=4) a hub is opened in both the median and center 

problems (node 13). This can be regarded as an indication of 

conflicting objectives which reveals the need for using a 

multi-objective approach for solving the star hub network 

problems. 

Table 2 presents the results for solving the problem 

considering both the objectives at the same time using the 

formulation (1)-(10) for the case of p=2. The relative weight 

factor values (λ) are shown in the first column. The next two 

column show the corresponding objective function values for 

Z1 and Z2 in the resulted optimal solution. Fourth column 

presents the opened hubs and the last column show the 

computational time (in seconds) needed to reach the final 

solution.  

 

Table 2- Computational results for p=2 

λ Z1 Z2 Hubs CPU(s) 

0.0 2144.35 3046.83 11,21 140.04 

0.1 1844.21 3047.24 5,11 21.20 

0.2 1844.21 3047.24 5,11 18.45 

0.3 1844.21 3047.24 5,11 17.58 

0.4 1844.21 3047.24 5,11 17.36 

0.5 1844.21 3047.24 5,11 14.25 

0.6 1672.49 3448.07 13,21 15.35 

0.7 1580.10 3790.38 5,8 10.58 

0.8 1540.51 4003.38 5,13 9.47 

0.9 1540.51 4003.38 5,13 8.12 

1.0 1532.03 4173.67 5,19 5.10 

 

It should be noted that the solutions correxponding to λ=0 

and λ=1 are merely single objective solutions and hence they 

are the same as the solution reported in Table 1. It can be seen 

from the above table that as the value of λ increases, the first 

objective (median) gets better, whereas the second objective 

(center) gets worse. In other words, the decision maker can 

make a good trade-off between the two objectives by 

selecting a suitable value for λ. This is because of the fact the 

by selecting larger values for λ, we put much weight on the 

first objective and hence the model finds solutions with 

better Z1 values. It can also be observed that the optimal hubs 

for the intermediate values of the parameter λ are quite 

different from the hubs resulted under its extreme values (0 

or 1). This shows that the proposed biobjective model can 

obtain a range of solutions (pareto optimal solutions) with 

varying qualities (in terms of objective function values) and 

different network configurations (in terms of location of hubs 

and allocation of nodes). Therefore, decision makers with 

different preferences with regard to these objectives can 

benefit by the flexibility provided by the proposed model. 

From solution time perspective, it can be seen that all the 

instances are solved in a short CPU time which indicates that 

the proposed mathematical model is efficient enough for 

being directly used for solving problem instances with small 

and medium sizes. Another interesting observation is that the 

solution time for smaller values of λ is higher than the 

solution time when λ get closer to 1. This means that the time 

required for solving the star p-hub center problem is 

considerably larger than the time needed for solving the star 

p-hub median problem of the same size. 

The objective function values shown in Table 2 are plotted to 

form an efficient frontier curve (pareto frontier). This curve 

is illustrated in Figure 2. In this figure, the horizontal axis 

represents the first objective (Z1), whereas the vertical axis 

represents the second objective (Z2). 

 

 

Figure 2- Efficient frontier curve for p=2 

Table 3 shows the results for solving the problem for p=3. 

The presented results show a similar behavior as the case of 
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p=2. Solution times, however, are slightly higher for the case 

of p=3 comparing to the case of p=2. 

 

Table 3- Computational results for p=3 

λ Z1 Z2 Hubs CPU(s) 

0.0 2175.09 3047.24 5,11,21 175.05 

0.1 1915.39 3047.24 5,11,21 32.25 

0.2 1915.39 3047.24 5,11,21 33.26 

0.3 1870.34 3073.44 5,11,13 28.14 

0.4 1870.34 3073.44 5,11,13 25.78 

0.5 1870.34 3073.44 5,11,13 24.18 

0.6 1701.76 3448.07 2,13,21 18.46 

0.7 1572.28 3879.57 5,19,23 19.27 

0.8 1572.28 3879.57 5,19,23 15.43 

0.9 1572.28 3879.57 5,19,23 15.20 

1.0 1546.37 4463.88 8,19,20 9.45 

 

The efficient frontier curve for p=3 is shown in Figure 3. 

 

 

Figure 3- Efficient frontier curve for p=3 

The results for solving the problem with p=4 are shown in 

Table 4. Also the corresponding efficient curve is illustrated 

in Figure 4. 

 

Table 4- Computational results for p=4 

λ Z1 Z2 Hubs CPU(s) 

0.0 2195.75 3073.44 5,11,13,21 185.95 

0.1 1939.21 3073.44 5,11,13,21 47.69 

0.2 1939.21 3073.44 5,11,13,21 42.16 

0.3 1939.21 3073.44 5,11,13,21 29.08 

0.4 1939.21 3073.44 5,11,13,21 31.40 

0.5 1608.54 3628.16 5,19,22,23 29.79 

0.6 1608.54 3628.16 5,19,22,23 23.89 

0.7 1608.54 3628.16 5,19,22,23 26.17 

0.8 1608.54 3628.16 5,19,22,23 25.00 

0.9 1564.56 3996.21 8,19,20,23 17.41 

1.0 1562.94 4463.88 8,13,19,20 19.10 

 

 

 

Figure 4- Efficient frontier curve for p=4 

Finally, the results for solving the problem with p=5 are 

shown in Table 5. Corresponding efficient curve is also 

illustrated in Figure 5. 

 

Table 5- Computational results for p=5 

λ Z1 Z2 Hubs CPU(s) 

0.0 2247.34 3074.69 4,5,11,13,21 190.08 

0.1 1986.48 3104.51 5,6,11,13,21 49.30 

0.2 1986.48 3104.51 5,6,11,13,21 41.95 

0.3 1964.23 3119.21 5,6,11,13,20 40.84 

0.4 1964.23 3119.21 5,6,11,13,20 34.39 

0.5 1603.07 3628.16 5,12,19,22,23 35.13 

0.6 1603.07 3628.16 5,12,19,22,23 28.48 

0.7 1603.07 3628.16 5,12,19,22,23 22.79 

0.8 1603.07 3628.16 5,12,19,22,23 19.00 

0.9 1581.78 3920.43 8,10,19,20,23 18.13 

1.0 1567.26 4354.00 7,8,10,19,20 17.11 

 

 

Figure 5- Efficient frontier curve for p=5 

The above results show that the decision makers can use the 

model developed in this paper easily and solve their problem 

in a reasonable computational time. However, if the problem 

size (number of nodes in the network) gets large, solving the 

problem suing commercial solvers might take much longer 

times. In such cases, one will need to try faster solution 

methods such as metaheuristic algorithms.  
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5. Conclusions 

In this paper, we considered the biobjective star p-hub 

location problem. The problem is formulated as a mixed 

integer linear model and solved using an standard 

optimization package. Computational experiments were 

conducted on the well-known CAB data sets and the 

proposed model was solved for all the tested instances in 

short and reasonable CPU times. The results showed that as 

the value of weight factor change, a good trade-off can be 

reached between the two objectives. Based on these findings, 

efficient frontier curves were drawn for the problem under 

different settings.  

This research can further be extended by developing efficient 

solution algorithm (exact, heuristic, or metaheuristic) for 

solving the problem with large-sized instances in reasonable 

time. Another potential research direction is to incorporate 

uncertainty in data (demands, costs, etc.) into the modeling 

framework in order to better reflect the real world problems. 
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