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Abstract 

 

Over five decades have passed since the first wave of robust 

optimization studies conducted by Soyster [1] and Falk [2]. 

It is outstanding that real-life applications of robust 

optimization are still swept aside; there is much more 

potential for investigating the exact nature of uncertainties 

to have intelligent robust models. For this purpose, in this 

study, we investigate a more refined description of the 

uncertain events including (1) Event-driven and (2) 

Attribute-driven. Instead of model-based calibration of 

robustness, we analyze the structural properties of uncertain 

events to obtain a more refined description of the uncertainty 

polytopes. Hence, we introduce tractable robust models with 

a decent degree of conservatism and aversion from over-

protection caused by the classic cardinality-restricted 

uncertainty polytopes.  
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Introduction 
 

Robust optimization is a tractable alternative to stochastic 

programming particularly suited for the problems in which 

parameters are unknown and their respective distributions 

are uncertain. In many real-world situations, a precise 

stochastic description of the uncertain events may not be 

available. With less structured information, such as bounds 

of an uncertain parameter, one might describe the existing 

uncertainties by dedicating a set in which all realizations 

should lie, i.e. “uncertainty set”. The goal is to guarantee the 

feasibility of the underlying constraints for any possible 

realizations, while optimizing an objective defending against 

the worst possible consequence. 

The original form of robust optimization, introduced by 

Soyster [1] and Falk [2], was generally concerned with linear 

programming problems with inexact technological 

coefficients. Their proposed robust optimization was too 

conservative and subjected to driving the worst case for each 

uncertain parameter since the considered uncertainty was 

limited to the column-wise structure. Numerous works 

significantly generalized and extended the earlier platform 

into other classes of convex optimization problems beyond 

linear programming, e.g. conic and semi-definite 

programming (for example see [3] and [4]). The other works 

paved the way for a more complex description of the 

uncertainty polytopes, e.g. intersections of ellipsoidal 

uncertainty sets, budgeted uncertainty sets, etc. (for example 

see [5] and [6]). The key idea behind an uncertainty set is 

based on three components: nominal values of uncertain 

parameters, perturbation values, and uncertainty generating 

mechanism. 

The rest of the paper is mainly focused on the uncertainty set 

proposed by Bertsimas and Sim [6], the so-called 

“cardinality-restricted uncertainty set”. 
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The goal of this paper is to investigate more refined versions 

of uncertainty events. Hence, it enables us to avoid the over-

protection issue caused by the classic cardinality-restricted 

uncertainty set. The generating polytope of the classic 

version benefits from convexity, especially integrality of its 
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convex hull, which makes it more tractable. However, it is 

independent of decision variables of the refined model and 

type of uncertainty event. In this study, we present less 

conservative uncertainty sets which guarantee an improved 

protection level of the classic version. We discuss the types 

of events which generate the combinatorial structure of 

uncertainty sets, i.e. “combinatorial uncertainty set”. We also 

address the tractability issue of some problems caused by 

proposed uncertainty sets. 

The rest of this paper is organized as follows. Section 

“Structural Properties of Uncertain Events” attempts to 

investigate the structural properties generated by the two 

common types of uncertainty sets. Section “Event & 

Attribute-driven Robustness” applies discussed uncertainty 

sets on two classic problems: robust knapsack problem and 

robust portfolio selection problem. The last section 

concludes the study with a summary and future directions. 

 

Structural Properties of Uncertain Events 
In this section, we briefly discuss the structural properties 

generated by the two common types of uncertainty sets; we 

call them “attribute-driven uncertainty set” (data-driven 

uncertainty set) and “event-driven uncertainty set” 

(combinatorial uncertainty set). 

Attribute-driven uncertainty sets use the perturbed values of 

uncertain parameters as direct inputs to the mathematical 

model of the robust counterpart. They connect the decision-

maker’s risk preferences with the “budget of uncertainty” 

and the controlling mechanism of uncertainty. For example, 

consider the portfolio selection problem in which an investor 

chooses the proportion of capital to be invested in each of N 

assets such that the desired wealth is achieved. The objective 

is to determine the fraction of invested asset i so as to 

maximize the total portfolio return. An underlying 

assumption of Markowitz’s model is that precise estimates 

of return of asset i, μi, and risk of asset i, σi, have been 

obtained. However, asset returns are uncertain. Hence, we 

can interpret risk of return i as the perturbed value of return 

of asset i and incorporate it in the uncertainty set. 
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In this example, the risks act as “internal” function of asset 

returns, also, any value of variable δi enforces asset i to gain 

risk value i. 

On the other hand, the event-driven uncertainty set triggers 

uncertainty in parameters when a specific event is occurred 

in the system and generates discrete uncertainties. 
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Uncertainty set U is non-convex and variable δ has the role 

to generate combination of events. The disruption systems 

are great examples of this type of uncertainty sets. An et al. 

[7] used a combinatorial uncertainty set to formulate a p-

median facility location problem prone to disruptions. 

Moreover, uncertainty set U can be modified in order to 

encompass data of uncertain parameters. However, 

incorporating an event-driven uncertainty set into a 

mathematical model could make it computationally 

intractable. There exists two type of strategy, to the best of 

the authors, to solve the transformed model. First methods 

are mainly based on iterative algorithms. Zeng [8] proposed 

a column-and-constraint generation algorithm to solve two-

stage robust optimization problems in which the first stage 

defined by a combinatorial uncertainty set. They also solve 

the model with existing benders-style cutting plane methods. 

The second type of methods, originally presented in this 

paper, transform event-driven uncertainty polytopes into 

attribute-driven ones. They are heuristically performed and 

differ from one problem to another. This method facilitates 

the transformation of original model into a tractable robust 

counterpart. We discuss this method in the next section. 

 

Event & Attribute-driven Robustness 
 

Robust Event-driven Knapsack Problem 

Consider a knapsack problem given parameters ci as the cost 

and wi as the weight of item i. 
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It is assumed that the weights wi are uncertain, independently 

distributed and follow distributions in    [w̅i, w̅i+ŵi]. The 

objective value vector c is not subject to data uncertainty. The 

goal is to maximize the total utility of |N| items. The item 

should be selected and loaded on a cargo with strict weight 

restrictions. Suppose item i with weight w̅i has auxiliary 

component i with weight ŵi. If uncertainty event occurs, δi=1, 

the weight of item i should be increased by ŵi. We define the 

uncertainty set as follows. 
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Then the original robust problem with respect to worst-case 

outcome becomes: 

 

maximize i i

i N

c x
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In order to solve the robust part of the problem (inner 

maximization) we heuristically define a second problem that 

seeks the worst-case outcome when the combination of 

events occurs. 
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In order to reach a closed form of the heuristic problem (7), 

we need to take the dual form of it. At first glance, the 

dualization technique may not be applicable since the 

problem is not a convex linear programming (variable δi is 

defined over integer domain). The following property 

addresses the integrality issue caused by the integer variable 

(we call this problem as “Ξ”). 

 

Property 1. The convex hull of Ξ is an integral polyhedron. 

Proof. 

See Appendix. 
 

 

Now we take the dual form of relaxed Ξ and incorporate it 

into the original problem. Relaxed Ξ is feasible and bounded 

for all Γ[0,|N|]. Also, the dual of relaxed Ξ is feasible and 

bounded. By strong duality, their objective values coincide. 
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where τ and pi are the dual variables of the relaxed Ξ. 

 

Prioritized Budgeted Uncertainty Set 

In practical cases, a limited “budget pool” is dedicated to 

both the item selection process and the robustness cost. In 

the previous example, the user only defines the budget of 

robustness; whereas the whole budget must be 

simultaneously addressed. Consider the previous example, 

the cargo (knapsack) problem. Suppose the cargo carries two 

set of items: medical items, Π, and commercial products, Π́. 

One cannot consider the underlying uncertainty of 

commercial products when necessary products are not 

loaded. On the other hand, to avoid the over-protection 

caused by UΓ, which is independent of x, Poss [9] introduced 

a novel model of uncertainty polytope. Instead of 

considering budget of uncertainty Γ, a multifunction of x, 

γ(x), was considered. We made some modifications to 

incorporate the prioritized budget into the uncertainty set. 

The objective still seeks to maximize the total utility of items. 

Given Φ as total budget for the robustness and set Π as the 

set of prioritized items, 
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where α is the robustness importance. Then, the variable 

budget uncertainty set with the event-driven approach is 

proposed as follows. 
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According to Property 1 and the worst-case criterion, the 

robust counterpart of this problem can be formulated as 

follows: 
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where τ and pi are the dual variables. Note that the first 

constraint contains a non-linear expression. We make the 

following modifications and insertions in order to have a 

tractable linear form of the proposed counterpart. 
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The linear robust counterpart is presented as follows. 
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Property 2. Constraints set (9) do not impose any additional 

restriction on the minimal value of τ, so that we can choose 

M equal to maxiN(ŵi). 

ˆ( )(1 ) ,i i i
i N

w y i 


     max  

Property 3. If α=1 and |Π|=|N|=Γ, then opt(UΓ)= opt(UΦ). 
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Risk Compensatory Uncertainty Set 

Bertsimas and Sim [6] reformulated a maximum expected 

return of a portfolio model as a linear robust optimization 

problem considering the classic cardinality-restricted 

uncertainty set. 
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where C is the total capital, yi is the portion of investment in 

asset i (xi=yi/C). The nominal value and the investment risk 

of return of asset i are r̅i and r̂i . τ and pi are the dual variables. 

Given N as the set of all assets. A less conservative approach 

(to avoid over-protection) is to compensate the robustness 

cost (the risk of obtaining lower profit) of “risky” assets, Ψ, 

by purchasing “safe” assets, Ψ. The safe assets can be either 

a bank savings account or a government bond [10]. Hence, 

the return value of a subset of assets, Ψ, are prone to be 

perturbed within the predefined uncertainty interval (note 

that r̅i>r̅j and r̂i>r̂j , iΨ , jΨ). Given Φ as the budget 

of uncertainty, 

 
*

i

i

x


    

where α is the robustness importance. The uncertainty set is 

defined as follows. 
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Again, note that risk of asset i is an internal property of return 

of asset i (attribute-driven uncertainty); hence, we defined δi 

over a continuous domain. According to worst-case approach, 

the problem is formally stated as follows. 
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The inner maximization function of problem (14) can be 

translated into a single max-LP problem (15). 
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By dualization of problem (15) and strong duality theorem, 

the robust counterpart is obtained as (16). 
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Property 4.  τ  maxi(r̂i)  . 

Proof. 

Consider deciding to invest the total capital on risky asset 

k with the highest return, r̅k = maxi(r̅i), and also the 

highest risk, r̂k = maxi(r̂i). Hence, xk=1 and pk+τ  r̂k . 

According to the objective function, variables pk and τ should 

take the minimum possible value. Variable pk does not 

operate in any other constraint and takes value zero; 

therefore, the minimum possible value for τ is r̂k . In other 

words, variable τ cannot exceed from maxi(r̂i).     
 

 

The objective of problem (16) is not linear due to quadratic 

term τ(αΣiΨ xi).  We reformulate this model based on 

McCormick convex envelope relaxation [11] and three 

following premises. 
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Note that the efficiency of relaxation heavily depends on the 

tightness of the bounds of quadratic variables. The linear 

model of the robust counterpart is presented as follows.  
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Conclusion 
In this study, we investigate the structural properties of 

uncertain events to have intelligent robust models with 

refined uncertainty polytopes. We also illustrated the 

approach by applying them on two classic robust 

optimization problems. There are cases when polyhedral 

theorems and affine policies does not operate for conversion 

of event-driven approaches to attribute-driven ones; hence, 

we recommend the adjustable robust models and we leave it 

as a future direction. 

 

 

Appendix: Proof of Property 1. 
This is equivalent to proving the technological coefficient of 

Ξ in the LP-relaxed form is totally uni-modular (TU). Now, 

we make use of the following proposition proved in [12]. Let 

Q be a matrix in {0, 1, -1} with no more than two nonzero 

elements in each column. Then Q is TU if and only if the 

rows of Q can be partitioned into two subsets Q1 and Q2 such 

that if a column contains two nonzero elements and both 

nonzero elements have the same sign, then one is in a row 

contained in Q1 and the other is in a row contained in Q2 .  

In the LP-relaxed form, constraint set δi 1 should also be 

added to Ξ. The technological coefficients of Ξ are 

characterized as matrix AΞ. 

1 | |

(| | 1) | |

N

N N





  

e

A

| | | |N N

 
 
 
 
 I

  

 

e is an all-ones vector and I is a unit matrix. Q=AΞ has 

components of 0 and +1 with no more than two nonzero 

entries in each column. AΞ can be partitioned into two 

subsets Q1 and Q2. Consider Q1=e and Q2= I (one of +1 is in 

a row contained in Q1 and the other is in a row contained in 

Q2). Under this condition, according to the proposition 

proved in [12], AΞ is TU. Then the relaxed Ξ is integral for 

Γℤ. 
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