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Abstract 

In this paper a modified fuzzy c-means clustering method is presented which is applicable for interval type-

2 fuzzy data sets. A quantifying similarity measure based on Euclidean distances function which measured 

the similarity between the information contained in each interval type-2 fuzzy data point is implemented for 

data clustering. Moreover, a modified Xie-Beni index is presented which is used for interval type-2 fuzzy 

sets. Some numerical examples used to show the usefulness of IT2 fuzzy c-mean clustering method. The 

results show IT2FCM is the superior and efficient method for interval type-2 fuzzy sets clustering. 
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Introduction 
Clustering [1, 13, 17, 23] is a major branch of data mining used for discovering groups and identifying patterns and 

distributions of a given set of data. The goal of every clustering algorithm as an unsupervised classification [3, 14] is 

grouping data elements according to some (dis)similarity measures so that unobvious relations and structures in the data 

can be revealed. The use of clustering is supported by the cluster hypothesis which assumes that data relevant to a given 

cluster tend to be more similar to each other than to irrelevant data and hence are likely to be clustered together. 

Clustering problems arise in many fields of (computer) science, in particular in computer vision, pattern recognition, 

data mining and machine learning, etc.  

On the other hand, in the clustering process, there are no predefined classes and no examples that would show what 

kind of desirable relations should be valid among the data that is why it is perceived as an unsupervised process [Berry 

and Linoff, 1996]. In classical clustering each data must be assigned to exactly one cluster. This can be a source of 

vagueness in case of the cluster have overlaps so afford loss of information. So this kind of ambiguity can be taken into 

account by means of fuzzy theory.  

Depending on way of measuring similarity, information of size and shape that contains in cluster prototypes and 

restriction on fuzziness degree, several fuzzy clustering algorithms could be known [19, 20]. The most common fuzzy 

clustering techniques is fuzzy c-mean clustering algorithm which uses only cluster centers and a Euclidean distance 

function in comparison to the Gaustafson-Kessel algorithm which may detect clusters of different geometrical shapes in 

a data set by introducing an adaptive distance norm for each clusters. Here we focus on fuzzy c-means (FCM) algorithm 

based on that one proposed by Bezdek [6]. In this algorithm the number of cluster should be defined at first by the 

users. Depending on the choice of C fuzzy partitions obtained, so, it’s not always possible to know c in advance. So, it 

is necessary to validate each of the fuzzy C-partitions once they are found. This validation is performed by a cluster 

validity index. By means of a validity index, we can evaluate each of fuzzy c-partitions and find the optimum partition 

and optimal number of clusters [24, 21,22]. There are many criteria for evaluating clustering data. In particular, 

Bezdek’s partition coefficient (PC) and partition entropy (PE) and Xie-Beni’s index have been frequently used in recent 

research. Major characteristic for evaluating clusters that is used in many indices is compactness and separation 
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In the present work here, a modified fuzzy c-mean algorithm for interval type-2 fuzzy set (IT-2) is purposed. In the 

purposed Type-2 FCM, we define the distance between two interval type-2 data. Then, a modified Xie-Beni index that 

is applicable for interval type-2 data are developed. The purposed index is consisting of two properties: compactness 

measure and separation measure. The compactness measure quantifies the deviation of data from center of clusters. 

Since data are interval type-2 fuzzy sets, we define an index for each data based on its mean and variance and then 

approximate the distance between two IT2 set by means of the distance between two indices. Thus, a good partition is 

expected to have a low degree of overlap and a large separation distance. 

The remainder of this paper is organized as follows: in section 2, we present some major concepts of fuzzy c-means 

clustering method and some corresponding validity indices that are applied for designing optimal clustering. In section 

3 we introduce a new fuzzy C-means clustering method that is useful for clustering interval type-2 fuzzy data and its 

corresponding validity index based on estimation of interval type-2 fuzzy data with type-1 one and measuring similarity 

by means of it. We implemented the purposed model for clustering some questions that is applied for calculating 

investor risk propensity who invests in stock market in section 4. 

 
Fuzzy c-means algorithm 

FCM clustering algorithm was first proposed by Bezdek [3]. We focus on the criterion-based methods, more 

specifically on the class of methods based on the fuzzy C-means (FCM) algorithm [Bezdek, 1981]. FCM algorithm 

which is a very powerful tool, deals with nontrivial and uncertain data. FCM as an iterative algorithm following the 

same steps as the K-means algorithm but C-means algorithm is much more flexible because it present objects have 

some inference with more than one cluster. So in This way, overlapping clusters may be realized. 

In FCM clustering method, after selecting initial centers for the clusters randomly, Euclidian distance is employed 

as the similarity measure. The difference between each object and center of the cluster (i.e., the mean object in cluster) 

is weighted by a function of that object’s membership value in that cluster. The membership functions are then 

iteratively altered to minimize the sum of weighted differences.  

Assume the vector xk , k=1,2, …, N, contained in the columns of data matrix X, will be partitioned into c clusters, 

represented by their prototypical vectors vi=[vi1, vi2,…,vin]T Rn , i=1,2,…,c. Denote VRnc the matrix having vi 

in its i-th column. This matrix is called the prototype matrix. The fuzzy partitioning of data among the c clusters is 

represented as the fuzzy partition matrix URnc whose element ik[0,1] are the membership degree of the data 

vector xk in the i-th cluster. A class of clustering algorithms searches for the partition matrix and the cluster prototypes 

such that the following objective function is minimized: 
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where, m>1 is a parameter that controls the fuzziness of the clusters. The function d(xk, vi) is the distance of the data 

vector xk from the cluster prototype vi. So, FCM in brief is as follows: 

1- Fix c (2 c<n) and select a value for parameter m. Initialize the partition matrix, U(0). Each step in this 

algorithm will be labeled r, where r = 0, 1, 2, … . 

2- Calculate the c centers {vi(r)} for each step.  

3- Update the partition matrix for the rth step, U(0) as follows: 
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, stop; otherwise set r = r+1 and return. 
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The optimal fuzzy set will be determined by using this iterative method where J is successively minimized with respect 

to U, V. 

 

Traditional clustering validity indices 

To determine an appropriate number of clusters C for a given data set, a cluster validity function needs to be 

selected. Cluster validation refers to the problem whether a given fuzzy partition fits to the data all. So it is used for 

evaluating the clustering results by means of a quantities objective function. Validity index is applicable to measure 

fitness of number of clusters and the parameterized cluster shapes. Some kinds of validity indices are usually adopted to 

measure the adequacy of structure recovered through cluster analysis. 

In the case of fuzzy clustering algorithm, some validity indices such as partition coefficient, partition entropy, 

backer-Jane index, etc. for evaluating results are used only the information of membership functions. But, there are 

some validity index that not use only he information of membership grads but also the structure of data. 

A fuzzy clustering algorithm is run over a range of c values, 2,...,cmax. Bezdek proposed the Partition Coefficient 

(VPC) to measure the amount of overlap between clusters as follows:  
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The optimal fuzzy partition is obtained by maximizing VPC (or minimizing VPE) with respect to c = 2; . . . ; cmax. Xie and 

Beni proposed a validity index (VXB) that focuses on two properties: compactness and separation. VXB is defined as: 
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In this equation, the numerator is the sum of the compactness of each fuzzy cluster and the denominator is the 

minimal separation between fuzzy clusters. The optimal fuzzy partition is obtained by minimizing VXB with respect to c 

= 2,…,cmax, VXB decreases monotonically as cn. Partition Index VSC which is presented by Bensaid and Hall [19] is the 

ratio of the sum of compactness and separation of the clusters. It is a sum of individual cluster validity measures 

normalized through division by the fuzzy cardinality of each cluster:  
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VSC is useful when comparing different partitions having equal number of clusters. A lower value of VSC indicates a 

better partition 

All of the cluster validity indices are applicable for type-1 fuzzy sets. So they can’t cover all of the ambiguity of type-2 

fuzzy sets because similarity measure based on distances between crisp vectors. In the case inputs are IT-2 fuzzy sets 

distance between vectors defined at the different manner. 

  

Fuzzy C-Mean clustering method for interval type-2 fuzzy data 

This section introduces a new fuzzy c-mean clustering algorithm for interval type-2 fuzzy system. This method is a 

suitable extension of the standard fuzzy clustering that will be discussed later. 

Assume both X and 0V  are fuzzy denoted by X
~

and 0

~
V . It should be mentioned that the distance between kx and iv or 

kx  and jv
are calculated crisply .Moreover, m is crisp number thus 

suik '
are crisp. 

By extending X to X
~

 and V to V
~

, all suik '  have membership function, too. Therefore, the elements in tU matrix are 

fuzzy numbers. In other words, by obtaining fuzzy membership, we have type-2 fuzzy clustering. For this purpose, we 

should define a suitable fuzzy distance to generate suitable matrix of MFs. 

 

Modified Fuzzy c-mean algorithm 
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Assume niXxi ,...,2,1,
~~  is unlabeled fuzzy data and 

cjVv j ,...,2,1,
~~

00 
is initial fuzzy cluster centers and nc 1 , 

m>1, T=iteration limit, 0 is termination criterion and m is a parameter which determines the fuzziness of the 

resulting clusters. 

Since our data and centers of clusters are interval type-2 fuzzy sets we have to define a new distance measure that 

is applicable for IT-2 sets. For achieving this mean we introduce a determination index that can approximates each IT-2 

fuzzy datum with type-1 one. Many researches apply on constructing indices that is useful for fuzzy ranking. By means 

of this instrument, we design an index that approximates each Interval type-2 fuzzy set by a type-1 fuzzy set. As 

mentioned two fuzzy set with same mean may be not equal and this non equality is because of their spread. So By 

considering this fact the structure of this index is based on mean (M) and variance (Σ) of IT-2 fuzzy set. 

iiMX  ).1(.
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               (7)                                                                                                               

jjMV  ).1(.
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                                          (8)                                                                                                                     

So, for clustering objective data, we present a ' weighted' distance measure that can be applicable for any 

symmetric fuzzy data. The purposed distance measure is based on comparing each pair of fuzzy approximated variable 

by considering distances between their means and standard deviations, separately. It should be noted that an efficient 

weighting system is based on tuning coefficient and its value is between 0.85 and 0.9. A distance measure define as 

follow: 
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    (9)                                                                                                  where ,  
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Notice that w is means distance weight and w
is standard deviation distance between a pair of purposed index. 

So, we have 
1 ww  and  ww . We should tune these weights via the minimization algorithm. So, we 

obtain efficient weights through minimizing objective function with respect to optimal values of w
 and w .  

Then, we can appropriately tune the influence of two components of the fuzzy entities (its mean and standard 

deviation). The proposed ‘weighted’ distance measure is used for making comparisons within a set of data rather than 

looking at a single pair of data. Let us introduce notation that be used : 

 cjniuouU ijij ,...,1,,...,1,1 
 is the n×c membership matrix where n is the number of data and c present the 

number of clusters with respect to the following constraint: 
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So, we can define the objective function of the fuzzy clustering algorithm as follows: 
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data is IT2 fuzzy so we can use this formulation as objective function of FCM for IT-2 fuzzy set: 
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  (15)                                                    The objective function should 

be minimized with respect to the degree of fuzziness (m), membership degree of data into clusters and the mean and 

variance weights. Therefore, the fuzzy clustering model is characterized as follows: 
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(18)                                                                                                            As indicated before, the range for the 

membership exponent is m [1, ]. For the case m=1, the distance norm is Euclidean and the FCM algorithm 

approaches a hard c-means algorithm; i.e., only 0's and 1's come out of the clustering. Conversely, as m, the value 

of the function Jm0. This result seems intuitive, because the membership values are usually less than or equal to 1, 

and the large powers of fractions less than one approach zero. The exponent m thus controls the extant of membership 

sharing between fuzzy clusters. If all other algorithmic parameters are fixed, then increasing m will result in decreasing 

Jm. No theoretical optimum choice of m has emerged in the literature. However, the bulk of the literature seems to 

report values in the range 1.25 to 2. Convergence of algorithm tends to be slower as the value of m increases. 

Theorem. The iterative solution of this functional problem is as follows: 
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Proof. Let us first get the optimal membership degrees sij ' , i = 1, . . . , n; j = 1, . . . , c. By considering the Lagrangian 

function: 
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We consider the partial deviation of above objective function and set it to 0. 
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After setting first derivatives with respect to 
jjM , equal to zero: 
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(34)                                                                                                              So, the ste ps of purposed Type-2 FCM is as 

follows: 

 

Step1: store unlabled interval type-2 fuzzy data: 

niXxi ,...,2,1,
~~  , ix~ is an IT-2 fuzzy 

number for i=1,...,n. 

Step2:choose  

c : the number of cluster such that 1<c<n 

m : weightening exponential as fuzziness 

measure, m>1 

 : termination criterion ,0< <1 

initial fuzzy vector cjVv j ,...,2,1,
~~

00   

step 3 :  approximate each VX
~

,
~

with suggested 

indices as: 
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 Step 4: iterate : for t=1 to T 
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

















c

k

m

ikik

ijij

dwdw

dwdw

1

1

1

2222

2222

)1(

)1(

1





                    (37)                        

calculate
jjM ,  based on 

tU as: 

.

1

1








n

i

m

ij

n

i

i

m

ij

j

M

M



   (38)                                                                   

.

1

1












n

i

m

ij

n

i

i

m

ij

j




 (39)                                                                      
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IF   )()( 1 ttt UUE                                                (40)             

stop, Else Next t 

 

Modified Xie-Beni index 

Assume niXxi ,...,2,1,
~~  is unlabeled fuzzy data and cjVv j ,...,2,1,

~~
00  is initial fuzzy cluster centers 

and nc 1 , m>1, T=iteration limit, 0 is termination criterion and m is a parameter which determines the 

fuzziness of the resulting clusters then state above we define distance measure as: 

jijiij MMdd  ),(  , jijiij dd  ),(                     (41)                                                          


2

ji MM
2

ji 
                               (42)                                                                                               

Since the Xie-Beni index measure the compactness and separation of clusters then separation

scompactnes
VXB 

  

we have  

n
scompactnes




  (43)                                                            Assume that we have clusters cj ,...,2,1  with 

cvvv ,...,, 21  centers of clusters. Because the type of fuzzy data is IT2 then: 












n

i

ij

n

i

m

ijji

je

vx

clustV

1

1

2

~

~]~~[

)(





     (44)                                                                                                        








 n

i

ij

jiji

n

i

m

ij MM

1

22

1

])[(





            (45)                                                                          
)](),([)(1 clustvclustvclustVV rlje

c

jclust e
 

       (46)                                                                                  

)()( clustl vMinclustv 
                              (47)               

)()( clustr vMaxclustv 
                                       (48) 

2

)()(
mod

clustvclustv
V rl

ify




                          (49)                                                                                                          

ifyclust Vmod
                (50)                                                                                                                              

Compactness= n

clust

    (51)                                                                                                                   For se paration we 

should maximize the minimum distance between cluster centers. So, we use: 

Separation
)}~,~(

~
{min 2

jingfuzzyranki vvd
 

i )}~,~(
~

{(min 2

jingfuzzyranki

clust

vvdn



                    (52)                                                                                                    

 

Numerical example 
In this section we show the results of our fuzzy c-means clustering algorithm for interval type-2 fuzzy data applied 

to the risk propensity data that collected from 10 investor prefers. The data are interval type-2 fuzzy sets because it is 

based on human opinion and human view often contains some ambiguous. On the other hand, we use average of 

answers given to each question for clustering and it might be another source of vagueness. So, we use IT-2 fuzzy data. 

The advantage of our work is in that we don’t fix the number of clusters in priority. The data related to the answer of 10 

questions is obtained by 6 investors. The answers take the linguistically following value:  Highly disagree, Slightly 

disagree, Makes no difference, Slightly agree, Highly agree. Therefore, this ambiguity implies that the data managed 

hardly. data clustering is take placed based on the average of answers and data is interval type-2 fuzzy set (the 

membership function is Gaussian (symmetric). so, the purposed FCM algorithm can be applied.  By applying the 

designed FCM algorithm we obtain 3 clusters as follows: 
 

1 2 3 

2d
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1 0.9999990 3.3991301E-9 9.3628539E-7 

2 2.0592466E-9 0.9999998 1.6611927E-7 

3 0.9999990 3.3991301E-9 9.3628539E-7 

4 6.3970784E-8 6.6243813E-8 0.9999998 

5 5.0466778E-4 7.6911726E-6 0.9994876 

6 0.9999884 1.2794790E-7 1.1464319E-5 

7 5.0466778E-4 7.6911726E-6 0.9994876 

8 2.4691644E-4 0.01347331 0.9862797 

9 2.0592466E-9 0.9999998 1.6611927E-7 

10 9.5599095E-8 0.9999963 3.5632508E-6 

Table 1-  membership degree matrix 

 

So, the questions cluster as:  

Cluster 1 Cluster 2 Cluster 3 

1,3,6 2,9,10 4,5,7,8 

Table 2- Clustering results 

We preprocessed the data (see Remark 2) and then we performed our fuzzy c-means clustering model. After 

running several models using different values of m, we decided to set m=1.3 and by using the modified cluster validity 

index we obtain the optimal number of clusters equal to 3. The membership degree matrix U given in Table 2. From 

Table 3, we can easily distinguish the clusters of question number 1,3,6 set in cluster 1 ,question 2,9,10 set in cluster 2 

and finally we set question number 4,5,7,8 in cluster 3.the questions are as follows: 

1 
 Personal wealth is not an issue and financial loss doesn't 

keep me awake at night 

2 
I’d rather be in one investment with the chance of a high 
return, than in a broad selection with less chance 

3  If the market is volatile, it’s not a worry - I’ll still trade 

4 
 I’m willing to take as much time as I need to oversee my 

investments 

5  I enjoy the excitement of investment trading 

6  Price swings in investments I own are of little concern 

7 
 I don’t need a steady dividend income and would rather 

have capital growth 

8 
 It doesn’t bother me that my investments are not easily 
tradable 

9 
 Investment in emerging markets or high-tech research is 

more appealing to me than traditional blue chips 

10 
 I don’t feel the need to frequently check my portfolio 
and can leave it alone for long periods 

Table 3- the questions that implemented the purposed FCM on it 

By thinking about meant of question we can found the most related question set in one cluster. 

 

Conclusions and future works  

In this paper, we present a fuzzy clustering model for interval type-2 fuzzy data based on weighted distance 

measure which constructed from two indexes. These two indices are acceptable approximation of interval type-2 fuzzy 

data which handle appropriate information of initial data. Then distance measure as an index for showing similarity use 

for optimization lost function that object is minimize the weighted distances between mean of data and mean of center 

of clusters and their corresponding standard deviations. Mean of data has more critical role than standard deviation. We 

use standard deviation formulation demonstrated in the paper that specially designed for data with Gaussian interval 

type-2 fuzzy membership function. For achieve coefficient cluster number we run validity index that specialized for 

interval type-2 fuzzy data based on introduced distance measure.  Using this measure for identifying optimal number of 

clusters is an advantage that prevents system non optimality. The performance of these clustering method is presented 

and their results show  in the simulation study part that mark its great power in identifying clusters so that the data are 

related to special cluster with a greet membership function.  
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