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Abstract  
 

In this paper, the free torsional vibration of non-prismatic shafts is 

investigated. The governing equation is nonlinear, so there is no general 

analytical solution for the problem. Using numerical techniques is 

efficient in such circumstances. There is a wide range of numerical 

methods which each one has some abilities and benefits. So, choosing the 

proper numerical method is important in the solution procedure. In this 

paper, the discrete singular convolution (DSC) which is a relatively novel 

numerical approach is applied for the first time.  A comprehensive 

comparison study is carried out between the DSC and three other 

traditional numerical approaches, i.e. finite element (FE), second order 

finite difference (FD 2nd) and differential quadrature (DQ). The 

convergence, ability and efficiency of the DSC are evaluated in 

comparison with three other methods by solving several examples. The 

results indicate the efficiency of each method and beneficial conclusions 

are also given regarding the proper method for the torsional vibration 

analysis of non-prismatic shafts. 

  

Keywords: Discrete singular convolution, Numerical analysis, Shaft, Non-

prismatic, Torsional vibration. 
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Introduction 
In systems which power transition is worked out by rotation of the shafts, the axels may be subjected to 

torsional vibration. This phenomenon is causing shaft failure over time and must be considered as a 

design factor. So the torsional vibration analysis of the shafts must be implemented. If the cross section 

varies along the shaft, the governing equation is non-linear and it has not a general analytical solution. 

The existing analytical approaches could be employed for a few shafts with some specific cross sectional 

areas (Rafiee et al, 2010). If a problem does not have a general analytical solution; it must be solved by 

use of a numerical approach. There is a wide range of numerical methods such as finite difference (FD), 

finite element (FE), and differential quadrature (DQ) which each one is suitable in some specific fields 

and inappropriate in others. For instance all the mentioned methods are numerically unstable in the high 

frequency domain (Langley and Bardell, 1998). Paying attention to this, choosing the proper numerical 

method is important in the solution procedure.  

More recently, a new numerical algorithm entitled as discrete singular convolution (DSC) is introduced 

in 1999 (Wei,1999). DSC is highly potent in vibration analyses (Wei, 2001a). Vibration of some 

structural members such as rods (Xinwei et al, 2010) Euler- Bernoulli beam (Wei, 2001b), Timoshenko 

beam (Suming 2011, Civalek and Kiracioglu 2010), plates (Zhao et al, 2002) and membranes (Lim at el, 

2005) are analyzed by use of DSC. The comparison study between DQ and DSC is carried out in 

vibration analysis of rectangular plates by Ng et al, 2004. In the past researches, the members were 

prismatic and the vibration analysis of non-prismatic members is not considered. The only researches on 

effect of non-prismatic property of a member in the DSC accuracy are performed by the authors of the 

current paper, (Shokrollahi and Zayeri, 2014) and (Civalek, 2009).  

The objective of this paper is to present a proper algorithm to solve the nonlinear equation of the 

vibration of shafts by using of the DSC and perform a comprehensive comparison study between the new 

algorithm and traditional FD, FE and DQ methods. The proposed algorithm is produced in the form of a 

computer program, at first. To validate the algorithm, the results of the program will be compared with 

those of exact analytical solution for a specific example. then, the results of the new algorithm will be 

compared with those of traditional FD, FE and DQ methods and accuracy and convergence of the four 

will be investigated to determine the position of the DSC between mentioned numerical approaches. The 

results of the letter is helpful to choose the best method for determining the frequencies of the shaft in all 

frequency domains.  

 

Discrete singular convolution 

Discrete singular convolution (DSC) method is a relatively new numerical technique in applied 

mechanics which was originally introduced by Wei, 1999. Since then, the DSC method has been 

applied to various science and engineering problems. Accurate results and exact convergence 

have demonstrated that the DSC is a reliable and convenient numerical approach. The 

mathematical foundation of the DSC algorithm is the theory of distributions and wavelet 

analysis. Like some other numerical methods, the DSC method discretizes the spatial derivatives 

and, therefore, reduces the given partial differential equations into a system of linear algebraic 
equations. So, in the DSC algorithm, any function f(x) and its spatial derivatives at a grid point x 

are approximated by a linear sum of the functional values in the narrow domain [x-x-M, x+x+M] in 

that coordinate direction. This expression can be written as follows (Wei, 1999): 
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Where superscript n (n = 0, 1, 2...) denotes the nth-order derivative with respect to x. The 2M +1 

is the computational bandwidth which is usually smaller than the whole computational domain. 

Therefore, the resulting approximation matrix has a banded structure, which makes the DSC 

method more efficient than normal global methods and is particularly valuable with respect to 
large scale computations. {xi} is an appropriate set of discrete points on which the DSC of Eq.  
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(1) is well defined and δ is a singular kernel. The DSC algorithm can be realized by using many 

approximation kernels (Wei et al, 2002). However, it was shown that for many problems, the use 

of the Regularized Shannon Kernel (RSK) is very efficient (Wei 2001b, Wei et al  2002a,b, Wei 

2000, Wan and Wei 2000, Wan et al 2002). The RSK is given by (Wei, 1999):  

(2)

 

 

 












 
















 2

2

,
2

exp

sin

)(




 
k

k

k

k

xx

xx

xx

xx

 
In these equations, Δ=L/(N-1) is the grid spacing and N is the number of grid points. The 

parameter σ determines the width of the Gaussian envelope and often varies in association with 

the grid spacing, i.e., σ = r.Δ, here r is a parameter chosen in computations. 

As the DSC kernel is symmetric, the DSC computation requires a total of M fictitious grid 

points (FPs) outside each edge. Furthermore, the solution carries out for the grids inside the 

domain, so FPs must be eliminated. More precisely, it requires function values on these FPs 

which could be determined from those inside the domain by applying the boundary condition 

equations. Some attempts have been carried out for applying boundary conditions by 

researchers. Wei et al 2001, 2002b and Zhao and Wei, 2002 proposed a practical method to 

incorporate the boundary conditions. After that, Zhao et al, 2005 applied the iteratively matched 

boundary method to impose the free boundary conditions for Euler beams. More recently, Wang 

and Xu, 2010 present a method for applying boundary conditions using the Taylor’s series 

expansion. For gaining more details about the DSC method, interested readers may refer to the 

works of Wei 2001b,c, Wei et al 2002b, Xiang et al 2002, Wei 2000 and Civalek 2008. 

 

Governing equation and boundary conditions  

The governing equation of free rotational vibration of shafts with varying cross sectional area 

along its axial direction is (Bishop and Johnson, 1960):  
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Where x  and t  denote the Cartesian coordinate in the longitudinal direction of the shaft and 

time parameter, respectively.   is the rotational displacement, G  is the shear modules of 

elasticity,   is the mass of unit volume and )(xj  is the rotational inertia of the area cross section 

which varies along the shaft. 

In order to eliminate the time parameter from Eq. (3), we can make use of the separation of 

variables technique: 

(4)tiextx  )(),( 

 

In the above equation,  is the torsional frequency of the shaft. Substituting Eq. (4) in the Eq. 

(3) gives: 
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To achieve a general formulation, it is better to write the governing Eq. (5) in the dimensionless 

form:  
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In a more brief representation, Eq. (6) can be rewritten as follows: 
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The dimensionless parameters used in Eq. (7) are defined as follows: 
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Where L  is the shaft length, )0(j  is the rotational inertia of the cross sectional area of shaft at 

the left support ( 0x ), and  is the non-dimensional torsional frequency of the shaft. 

Two types of boundary conditions will be considered for the shaft in this paper: 

a) Free edge  

(9) 0
dx

d
 

 

b) Clamped support  

(10) 0  
 

Solution procedure  

The solution procedure of the torsional vibration of the shaft by use of the DSC is as follows: 

 
1. Mesh of the shaft 
N equidistant grids will be considered along the shaft body. The value of the function at each 

grid point is estimated based on the values of 2m nodes on both sides of it. So, to calculate the 

value of the function at the nodes near the boundaries, the value of m fictitious points outside of 

the solution domain is needed. So, there are a total number of mN 2 computational nodes inside 

and outside the domain.  Fig. 1 shows the mesh of a non-prismatic shaft. 

 

 
Fig 1. Geometry and grid points of a non-prismatic shaft 

2. Making the weighting coefficients matrices 
The terms of Eq. (7) can be written as follows by use of Eq. (1): 
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The following parameters are defined for simplification: 
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The A , B  and C  are the weighting coefficients matrices. The value of Error! Bookmark not 

defined. function and its first and second derivatives at N nodes over the shaft body is estimated 

using Eq. (11). So, the order of each weighting coefficient matrix is )2( mNN  . 

 
3. Implementation of the non-prismatic coefficient matrices 

In this stage, the non-prismatic coefficient matrix D  must be realized. The order of this matrix is 

of )2( mNN   and its ith row elements are identical which can be calculated by )(/)( ii XJXJ  . 

The index i varies from zero to 1N  which denotes the node number over the shaft body. To 

implement the non-prismatic property of the shaft, the weighting coefficient matrix B must be 

rewritten in the following form: 

(14) ikikik BDB   

 

In the above equation the function   denotes the Hadamard product. 

 
4. Implementation of the boundary conditions 

In order to carry the boundary conditions out, the values of the fictitious values for the function 

  over the nodes outside the solution domain should be calculated with regard to the inner 

nodes. In the present work the proposed algorithm by Subrahmanyam and Leissa, 1985 is 

applied for both free edges and clamped supports. So, the Eq. (9) and Eq. (10) can be written in 

the bellow discrete form: 

The boundary condition for free edge:  
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The boundary condition for clamped support:  
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After applying the boundary conditions by use of Eq. (15) and Eq. (16) the order of the 

weighting coefficients of the A , B  and C  matrices reduces to NN  . 

 

5. Implementing the system of equations 

Eq. (17) is the discrete form of the governing Eq. (7) after implementing boundary condition and 

non-prismatic property of the shaft:  

(17)             01

2

11   NNNNNNNNN ABC  

 

Eq. (17) can be rewritten in the following compact form:  

(18)   0][
2

 ABC  

 

The Eq. (18) is an eigenvalue problem and the }{  can be evaluated using a standard solver. 

Numerical results  

To validate the mentioned algorithm in the previous section, free vibration of a non-prismatic 

shaft with rotational inertia nLaxbxj )/()(   is studied. The chosen shaft is one of the few cases 

that has analytical solution (Rafiee et al 2010). Several examples are studied with various grid 
numbers and various values of the parameters a, b and n. In all cases parameters ρ, G and L set 

to unit value. Two types of boundary conditions i.e. clamped- clamped and free- clamped shafts 

have been considered. 

Tables 1 and 2 tabulate values of first five frequencies obtained from DSC written computer 
program and those from the analytical solution for non-prismatic shaft for b=1, a=0, 1, 2 and n= 

2, 4. In all cases N=15 and m=13 is considered. As it is seen, the numerical results are in good 

agreement with exact solutions and the maximum relative error is of order 10-2. 

 

 

Table 1. Non-dimensional frequencies of the C-C shaft with 
nLaxbxj )/()(   

n Ω 

a=0  a=1  a=2 

DSC Rafiee  

2010 

Relative 

error 

 DSC Rafiee  

2010 

Relative 

error 

 DSC Rafiee  

2010 

Relative 

error 

2 

1 3.14159 3.14159 0  3.14159 3.14159 0  3.14159 3.14159 0 

2 6.28318 6.28319 1.59E-6  6.28318 6.28319 1.59E-6  6.28318 6.28319 1.59E-6 

3 9.42478 9.42478 0  9.42478 9.42478 0  9.42478 9.42478 0 

4 12.56637 12.56637 0  12.56637 12.56637 0  12.56637 12.56637 0 

5 15.70801 15.70796 3.18E-6  15.70801 15.70796 3.18E-6  15.70801 15.70796 3.18E-6 

             

4 

1 3.14159 3.14159 0  3.28631 3.13349 4.88E-2  3.34598 3.12565 7.05E-2 

2 6.28318 6.28319 1.59E-6  6.27564 6.27892 5.22E-4  6.27564 6.27225 5.41E-4 

3 9.42478 9.42478 0  9.45935 9.42191 3.97E-3  9.45935 9.41726 4.47E-3 

4 12.56637 12.56637 0  12.52352 12.56421 3.24E-3  12.52352 12.56067 2.96E-3 

5 15.70801 15.70796 3.18E-6  15.70710 15.70623 5.57E-5  15.70710 15.70337 2.38E-4 
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Table 2. Non-dimensional frequencies of the C-F shaft with 
nLaxbxj )/()(   

n Ω 

a=0  a=1  a=2 

DSC Rafiee  

2010 

Relative 

error 

 DSC Rafiee  

2010 

Relative 

error 

 DSC Rafiee  

2010 

Relative 

error 

2 

1 1.57080 1.57080 0  1.16578 1.16556 1.89E-4  0.96704 0.96740 3.72E-4 

2 4.71239 4.71239 0  4.57383 4.60422 6.60E-3  4.53787 4.56745 6.48E-3 

3 7.85389 7.85398 0  7.75562 7.78988 4.40E-3  7.73488 7.76837 4.31E-3 

4 10.99558 10.99557 9.09E-7  10.94917 10.94994 7.03E-5  10.93242 10.93468 2.07E-4 

5 14.13718 14.13717 7.07E-7  14.19981 14.10173 6.96E-3  14.18125 14.08989 6.48E-3 

             

4 

1 1.57080 1.57080 0  0.82497 - -  0.51315 - - 

2 4.71239 4.71239 0  4.60045 4.48748 2.52E-2  4.66260 4.40407 5.87E-2 

3 7.85389 7.85398 0  7.75270 7.72175 4.01E-3  7.80518 7.67293 1.72E-2 

4 10.99558 10.99557 9.09E-7  10.91119 10.90163 8.77E-4  10.94383 10.86697 7.07E-3 

5 14.13718 14.13717 7.07E-7  14.06471 14.06426 3.18E-5  14.09559 14.03736 4.15E-3 

 

As this problem is solvable by other numerical approaches, so, in this letter the free torsional 

vibration of the non-prismatic shaft is analyzed by use of traditional FDM-2nd, FEM and DQM. 

So, three computer programs are provided based on each method. The first five frequencies 

obtained from the DSC method are compared with those of three other numerical approaches in 
tables 3 and 4. The value of N is fixed to be 15 in all four methods. It is observed from these 

tables that numerical errors of the four are relatively identical. But as the number of vibration 

mode increases, the results of the DSC are more accurate in contrast to three other numerical 

approaches. 

 

Table 3. Comparison between results of four numerical approaches for C-C shaft with 
4

)/1()( Lxxj   

Ω DSC 
Relative 

error 

 
FEM 

Relative 

error 

 
DQM 

Relative 

error 

 FDM-

2nd 

Relative 

error 

Rafiee  

2010 

             

1 3.28631 4.88E-2  3.29461 5.14E-2  3.28600 4.87E-2  3.28724 4.91E-2 3.13349 

2 6.27564 5.22E-4  6.41808 2.22E-2  6.36068 1.30E-2  6.36178 1.32E-2 6.27892 

3 9.45935 3.97E-3  9.66316 2.56E-2  9.47720 5.87E-3  9.46955 5.06E-3 9.42191 

4 12.52352 3.24E-3  13.04072 3.79E-2  12.60589 3.32E-3  12.56523 8.09E-5 12.56421 

5 15.70710 5.57E-5  16.58356 5.59E-2  15.73969 2.13E-3  15.61462 5.83E-3 15.70623 

             

 

Table 4. Comparison between results of four numerical approaches for C-F shaft with 
4

)/1()( Lxxj   

Ω DSC 
Relative 

error 

 
FEM 

Relative 

error 

 
DQM 

Relative 

error 

 FDM-

2nd 

Relative 

error 

Rafiee  

2010 

             

1 0.82497 -  0.82745 -  0.82497 -  0.82840 - - 

2 4.60045 2.52E-2  4.62704 3.11E-2  4.60045 2.52E-2  4.61009 2.73E-2 4.48748 

3 7.75270 4.01E-3  7.90027 2.31E-2  7.78910 8.72E-3  7.80149 1.03E-2 7.72175 

4 10.91119 8.77E-4  11.24580 3.16E-2  10.94966 4.41E-3  10.95012 4.45E-3 10.90163 

5 14.06471 3.18E-5  14.72373 4.69E-2  14.10158 2.65E-3  14.05432 7.07E-4 14.06426 

             

 

In order to compare the application of the four numerical methods in computing high 

frequencies, the first 50 frequencies of the non-prismatic shaft are investigated.  Fig. 2 and Fig. 3 

plot the percent relative error against mode number for all of four approaches.  
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In all methods number of nodes set to be N= 51 and the parameter m=N-1 in the DSC algorithm. 

According to these figures, the maximum error of the DSC is 2.4 percent for clamped- clamped 

shaft, while this value for the FEM and FDM-2nd is 20.13 and 25.04 percent, respectively. The 

DQ method gives accurate results up to 35th vibration mode. But from then the numerical 

instability gradually occurs in the method. For the clamped- free shaft, the maximum numerical 

error in calculating the first 50 modes for the DSC, FEM and FDM-2nd is 2.48, 20.16 and 24.31 

percent, respectively. The DQM presents acceptable results up to 35th mode number and then 

the numerical instability occurs gradually in the solution procedure. As it is observed from these 

figures, the DSC method is preferred for calculating high modes. 

 

 
 

Fig 2 & 3. Percent relative error against mode number for C-F (left) and C-C (right) shaft with
4

)/1()( Lxxj   

 

One of the advantages of a promising numerical approach is to present acceptable results with 

few grid points and so has less computational operations. The convergence trend of the four 

numerical approaches against increase in the number of grid points is shown for calculating the 

first and the second vibration modes of the non-prismatic shaft in Fig. 4 and Fig. 5.  As it is 

seen, the DQ and after that the DSC methods converge with less grid points. However, the FEM 

and FDM-2nd are accurate methods; they need a finer grid to converge. 

 

 
 

Fig 4 & 5. Convergence trend against increase in the number of grid points for C-F (left) and C-C (right) shaft with
4

)/1()( Lxxj   

 

  

Data in tables 5 and 6 exhibit the impact of non-prismatic property (increase in power of the 

polynomial nLaxbxj )/()(  ) on application of the four numerical approaches. The first 5 

frequencies of free vibration of a non-prismatic shaft with rotational inertia of 100
)/1()( Lxxj  is 

presented by use of the four methods for various numbers of grid points, in these two tables. 
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As it is observed, acceptable accurate results achieved with a few grid points by using DSC and 

FEM. However, the DQM and FDM-2nd yield unacceptable results (imaginary numbers) with 

few grid points and they need finer grids to produce acceptable accurate results. To enhance the 

comparison between results Fig. 6 and Fig. 7 are presented. It is obvious that the FEM and DSC 

give more accurate results. 
 

Table 5. Impact study of non-prismatic property for C-C shaft with
100

)/1()( Lxxj   

 Ω N=7 N=15 N=21 N=31 N=41 N=51 N=101 N=501 

DSC 

1 16.174809 14.685018 4.6228666 0.2949395 0.1776063 0.4915659 0.0114434 3.10E-05 

2 17.172898 22.710867 28.309866 28.856159 28.841682 28.825444 28.824514 28.819578 

3 17.685763 24.967824 30.173606 31.717607 31.696844 31.676607 31.677989 31.672561 

4 18.067563 26.985152 31.846043 34.177557 34.149294 34.124713 34.129109 34.12326 

5 18.557489 28.897977 33.687491 36.438908 36.402065 36.37263 36.380877 36.374639 

          

DQM 

1 - - - - - 7.60E-06 1.40E-05 3.156E-04 

2 - - - - - 28.819345 28.819344 28.81933 

3 - - - - - 31.672242 31.672291 31.672725 

4 - - - - - 34.123748 34.12315 34.117489 

5 - - - - - 36.368866 36.373006 36.419593 

          

FEM 

1 1.15E-06 6.46E-07 - - 1.30E-06 - - 1.71E-05 

2 39.298119 32.877596 31.009059 29.844246 29.406422 29.198252 28.915142 28.823174 

3 43.599128 36.903001 34.546967 33.02862 32.451141 32.17552 31.799706 31.6774 

4 48.381037 40.470893 37.679642 35.814119 35.096257 34.752425 34.282532 34.129366 

5 51.838612 43.81606 40.635026 38.416591 37.552255 37.136816 36.567825 36.382088 

          

FDM-

2nd 

1 - - - - - - - 4.14E-06 

2 - - - 28.64746 28.773069 28.806464 28.822249 28.819568 

3 - - - 31.692216 31.691427 31.68693 31.677258 31.672553 

4 - - - 34.349849 34.209758 34.165759 34.12998 34.123253 

5 - - - 36.828966 36.532051 36.446352 36.383433 36.374635 

 

Table 6. Impact study of non-prismatic property for C-F shaft with
100

)/1()( Lxxj   

 Ω N=7 N=15 N=21 N=31 N=41 N=51 N=101 N=501 

DSC 

1 16.3936 31.902 32.12085 28.20905 28.25103 28.26897 28.29096 28.29725 

2 17.17444 32.53995 33.31442 31.03633 31.08373 31.10374 31.12809 31.13502 

3 17.33816 33.36223 34.59186 33.46684 33.51825 33.54009 33.56653 33.57399 

4 17.53472 34.39826 36.08386 35.68763 35.75535 35.77918 35.8075 35.81555 

5 18.26021 35.59856 37.83658 37.90862 37.87212 37.89605 37.9266 37.9346 

          

DQM 

1 - - - - 28.30736 28.29749 28.29749 28.29749 

2 - - - - 30.89083 31.1352 31.13527 31.13521 

3 - - - - - 33.57532 33.57444 33.57555 

4 - - - - - 35.80857 35.81478 35.80295 

5 - - - - - 37.97041 37.93948 38.03332 

          

FEM 

1 36.01065 31.7369 30.1942 29.196 28.81437 28.63175 28.38222 28.30089 

2 39.73381 35.63174 33.66343 32.34292 31.83174 31.58617 31.24974 31.13988 

3 43.61681 39.08229 36.73457 35.09599 34.45387 34.14428 33.71915 33.58011 

4 48.3812 42.31689 39.63135 37.6683 36.889 36.51191 35.99295 35.82298 

5 54.38809 45.40429 42.43482 40.13907 39.21468 38.76573 38.14654 37.94345 

          

FDM-

2nd 

1 8.689595 19.63668 26.5836 28.00225 28.1787 28.23756 28.28852 28.29723 

2 - - - 31.00507 31.07061 31.09669 31.1271 31.13501 

3 - - - 33.62495 33.56711 33.55842 33.56706 33.57399 

4 - - - 36.06665 35.86995 35.82418 35.80973 35.81554 

5 - - - 38.41106 38.05387 37.96872 37.93001 37.93461 
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Fig 6 & 7. Convergence trend against increase in the number of grid points for C-F (left) and C-C (right) shaft 

100
)/1()( Lxxj   

 

Conclusions   

In this paper, a numerical algorithm based on the DSC is proposed for free torsional vibration 

analysis of non-prismatic shafts. To validate the proposed algorithm, vibration of a specific non-

prismatic shaft which has an analytical solution is investigated. Comparing the results indicated 

that the novel algorithm gives acceptable accurate results. As the problem of the vibration of 

non-prismatic shafts is solvable by other numerical approaches, some examples have been 

solved using FEM, DQM and FDM-2nd to determine the ability and position of the DSC in 

comparison with other numerical methods. Investigations indicated that the DQM gives 

relatively more accurate results with less grid points in low frequency domain. The DSC and 

FEM produce more accurate results with increasing of the non-prismatic property of the shaft 

and the DSC yields best results in the high frequency domain, which other approaches encounter 

numerical instability. 
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