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Abstract

In this paper, we consider some problems of estimation based on middle censored competing
risks data. It is assumed that the lifetime distribution of the latent failure times are independent
and exponential-distributed with the different parameters and also censoring mechanism is in-
dependent and non-informative.The maximum likelihood estimators of the unknown parameters
are obtained. Based on gamma priors, the Lindely’s approximation and Gibbs sampling methods
are applied to obtain the Bayesian estimates of the unknown parameters under squared error
loss function. Finally, a simulation study is given by Monte-Carlo simulations to evaluate the
performances of the different methods.
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1 Introduction

In many life-testing studies, it is common that for the failure of the experimental unit there exist more than

one cause of failure. The causes of failure are defined as risk factors before the failure occurs. Since these

risk factors compete in some sense for the failure of the experimental unit, it is well known as the competing

risks in the statistical literature. Some references in the field of the competing risks include [1] and [2]. In

addition to competing risks, censoring is considered in many life test studies. Censoring is very common

in life tests and it occurs for different reasons such as save to time, money and etc. The various categories

of censoring are right, left and interval censoring. The middle censoring is a general concept of censoring

which is introduced by [4]. In middle censoring the exact failure times are known only for a portion of the

units under study and other failure times are unobservable and fall within random intervals. In this paper,

we consider the competing risks model under middle censoring. Suppose n ∈ N identical units are put on a

lifetime experiment and Ti denotes the lifetime of the ith unit then Ti = min{Xi1, Xi2, . . . , Xis}, where Xij

is the latent failure time of the ith unit under the jth cause of failure, i = 1, 2, . . . , n and j = 1, 2, . . . , s. It

is assumed that the latent failure times Xi1, Xi2, . . . , Xis are statistically independent and not observable,

only Ti and Ci are observable where Ci = j if failure is due to cause j. Moreover, it is assumed that Xij
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follows the exponential distribution with the probability density function(PDF) and cumulative distribution

function(CDF) as fj(t; θj) = θje
−θjt and Fj(t; θj) = 1 − eθjt respectively, where t, θj > 0 and θj is unknown

parameter. The joint PDF and CDF of (Xi, Ci) are given by

f(t, j; θ) = θje
−θ∗t, and F (t, j;θ) =

θj

θ∗

(
1 − e−θ∗t

)
(1.1)

respectively, where θ = (θ1, . . . , θs) and θ∗ =
∑s

j=1 θj .

Let us consider the competing risks data with middle censoring scheme. Suppose n ∈ N identical units

are put on a lifetime experiment. For the ith unit, there is a random censoring interval [Li, Ri], which is

independent of the lifetime Ti. Also, for the ith unit, Ti is observable only if Ti ̸∈ [Li, Ri], otherwise it is not

observable. In other words, for the ith unit, we have

(Yi, Ci, δi) =

{
(Ti, Ci, 1) Ti ̸∈ [Li, Ri]
([Li, Ri], Ci, 0) Ti ∈ [Li, Ri].

Moreover, we assume that (L1, Z1), (L2, Z2), . . . , (Ln, Zn) are i.i.d. where Li and Zi = Ri − Li are

independent random variables and they have exponential distributions with the means α and β respectively.

It is also assumed that α and β do not dependent on θ and Li and Zi are independent of Ti.

2 Maximum likelihood estimators

Without loss of generality, after re-ordering the data, we assume that the first n1 and rest n2 are the

uncensored and censored observations respectively. Hence, our observed data is:

{(T1, C1, 1), . . . , (Tn1 , Cn1 , 1), ([Ln1+1, Rn1+1], Cn1+1, 0), . . . , ([Ln1+n2 , Rn1+n2 ], Cn1+n2 , 0)}

where n1 + n2 = n. Based on the observed data, the likelihood function can be written as

L(θ) ∝
s∏

j=1

n1∏

i=1

{f(ti, j; θ)}I(Ci=j)
s∏

j=1

n1+n2∏

i=n1+1

{F (ri, j; θ) − F (li, j; θ)}I(Ci=j)

∝ (
1

θ∗
)n−n1(

s∏

j=1

θ
mj

j )e−θ∗(
∑n1

i=1 ti+
∑n1+n2

i=1 li)
n1+n2∏

i=n1+1

(
1 − e−θ∗zi

)
, (2.1)

where zi = ri − li,

I(Ci = j) =

{
1 if Ci = j
0 o.w.,

and mj =
∑n

i=1 I(Ci = j) is total number of failures due to cause j. By setting the derivative of the

log-likelihood function with respective to θj to zero, the likelihood equation is as

∂ ln L(θ)

∂θj
=

mj

θj
− n2

θ∗
−

n1∑

i=1

ti −
n1+n2∑

i=n1+1

ln li +

n1+n2∑

i=n1+1

zie
−θ∗zi

1 − e−θ∗zi
= 0. (2.2)

Based on the likelihood equations, we determine that the MLE of θj , say θ̂j , must satisfy θ̂j =
mj

n1+n2
θ̂∗, j =

1, 2, . . . , s, where θ̂∗ is the MLE of θ∗. Substituting back θ̂j in Eq.(2.2), θ̂∗ can be obtained from the equation
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K(θ̂∗) = 0,

K(θ̂∗) =
n1

θ̂∗
−

n1∑

i=1

ti −
n1+n2∑

i=n1+1

li +

n1+n2∑

i=n1+1

zie
−θ̂∗zi

1 − e−θ̂∗zi

. (2.3)

Since limθ̂∗→0 K(θ̂∗) = +∞, limθ̂∗→+∞ K(θ̂∗) < 0 and ∂K(θ̂∗)

∂θ̂∗
< 0, thus the equation K(θ̂∗) = 0 has only one

root and the MLE of θj is unique for j = 1, 2, . . . , s.

3 Bayesian point estimators

Now, we deal with the problem of Bayesian estimating the unknown parameter θj . Our prior knowledge

about the true value of the unknown parameter θj is expressed via a gamma distribution with the PDF

πj(θj) =
b
aj

j

Γ(aj)
θ

aj−1
j e−bjθj , aj , bj > 0, j = 1, 2, . . . , s,

and it will be denoted by Gamma(aj , bj). Here all the hyperparameters aj and bj are assumed to be known.

Also, it is assumed that θ1, θ2, . . . , θs have independent prior distributions. Based on the prior distributions

and Eq.(2.1) we obtain the posterior density function of θ given the data as

π(θ|data) = Cons.
s∏

j=1

{θ
mj+aj−1
j e

−θj(bj+
∑n1

i=1 ti+
∑n1+n2

i=n1+1 li)}
n1+n2∏

i=n1+1

{ 1

θ∗
(1 − e−θ∗zi)}. (3.1)

It is obvious that the Bayesian estimator of θj under squared error loss function, E(θj |data), can not be

obtained analytically.

3.1 Lindley’s approximation

One of the most popular numerical techniques for the approximation of the ratio of integrals is Lindley’s

approximation method(see [3]). Using the Lindley’s approximation, the Bayesian estimator of θj ("BL")

under squared error loss function is as

θ̂SE
j =

[
θj +

s∑

j′=1

(
aj′ − 1

θj′
− bj′)σjj′ +

1

2

s∑

i′=1

s∑

j′=1

s∑

k=1

Li′j′kσi′j′σkj

]
θ̂
, (3.2)

where
Li′j′k =

∂3 ln L(θ)

∂θi′∂θj′∂θk
=

{ 2mj′
θ3
j′

− A i′ = j′ = k

−A o.w.,

A =
2n2

θ3∗
+

n1+n2∑

i=n1+1

1 + eθ∗zi

(1 − eθ∗zi)3
z3
i eθ∗zi ,

θ̂ = (θ̂1, θ̂2, . . . , θ̂s) and σi′j′ = (i′, j′)-th elements of inverse matrix [−Li′j′ ]s×s, j = 1, 2, . . . , s. Also, it can

be shown that

σi′j′ =





1
C

( s∏
j=1
j ̸=i′

mj

θ2
j

+ B
∑

j1<j2<...<js−2

j1,j2,...,js−2 ̸=i′

mj1

θ2
j1

· · · mjs−2

θ2
js−2

)
i′ = j′

−B
C

s∏
j=1

j ̸=i′,j′

mj

θ2
j

i′ ̸= j′,
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where

B =

n1+n2∑

i=n1+1

z2
i eθ∗zi

(eθ∗zi − 1)2
− n2

θ2∗
,

C =
s∏

j=1

mj

θ2
j

+ B
∑

j1<j2<...<js−1

mj1

θ2
j1

· · · mjs−1

θ2
js−1

,

and for s = 2,

∑

j1<j2<...<js−2

j1,j2,...,js−2 ̸=i′

mj1

θ2
j1

· · · mjs−2

θ2
js−2

= 1,
s∏

j=1
j ̸=i′,j′

mj

θ2
j

= 1 (3.3)

i′, j′, j1, j2, . . . , js−2, js−1 = 1, 2, . . . , s. The method requires that θ̂ be unique which we proved its.

3.2 Gibbs sampling method

We propose to use the Gibbs sampling method to generate samples from the posterior density function (3.1).

Since the conditional density of T , given T ∈ [l, r] is

fT |T∈[l,r](t; θ) =
θ∗e−θ∗t

e−θ∗l − e−θ∗r
, l < t < r, (3.4)

the posterior density in (3.1) can be rewritten as

π(θ|data) ∝
s∏

j=1

{θ
mj+aj−1
j e

−θj(bj+
∑n1

i=1 ti+
∑n1+n2

i=n1+1 t′i)}
n1+n2∏

i=n1+1

{
1

fTi|Ti∈[li,ri](t
′
i; θ)

}
. (3.5)

Hence we use the below Algorithm to generate samples from the posterior density function of θ1, . . . , θs from

(3.5).

Algorithm 1: Step 1. Generate θ1,1
j for j = 1, 2, . . . , s from Gamma(m′

j + aj , bj +
∑n1

i=1 ti).

Step 2. Generate t′n1+i for i = 1, 2, . . . , n2 from fTn1+i|Tn1+i∈[ln1+i,rn1+i](.; θ
1,1).

Step 3. Generate θ2,1
j for j = 1, 2, . . . , s from Gamma(mj + aj , bj +

∑n1
i=1 ti +

∑n1+n2
i=n1+1 t′i).

Step 4. Go back to Step 2, and replace θ1,1
j by θ2,1

j for j = 1, 2, . . . , s and repeat Steps 2 and 3 for a large

number say N times.

Therefore based on generated θ2,l′
j , l′ = 1, 2, . . . , N , the Bayesian estimate of θj ("BG") under squared

error loss function can be obtained as 1
N−b

∑N
l′=b+1 θ2,l′

j where b is the burn-in sample.

4 Simulation study

In this section, we intend to investigate the performances of the different methods, as proposed in this paper.

In this regard, some results based on Monte-Carlo simulations are presented. The simulation is carried out

for s = 2, (θ1, θ2) = (1, 0.5), n = 20, 30, 50, and for different censoring schemes. For censoring scheme we

choose (α, β)=(0.5, 0.5)(scheme 1), (1.25, 0.5)(scheme 2), (1.5, 0.15)(scheme 3). The proportion of censoring

(PC) under schemes 1-3 are 0.22, 0.37 and 0.52 respectively. All the Bayesian estimates are computed using
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Table 1: The estimated biases and MSEs of the different estimators of θ1 and θ2.

θ1 θ2

prior1 prior2 prior1 prior2
(α, β) PC n MLE BL BG BL BG MLE BL BG BL BG

(0.5, 0.5) 0.22 20 Bias 0.0550 0.0573 0.0573 0.0151 0.0303 0.0287 0.0298 0.0298 0.0083 0.0160
Scheme 1 MSE 0.1008 0.1013 0.1013 0.0342 0.0505 0.0478 0.0480 0.0480 0.0179 0.0250

30 Bias 0.0407 0.0422 0.0422 0.0234 0.0281 0.0200 0.0207 0.0207 0.0113 0.0137
MSE 0.0625 0.0627 0.0627 0.0343 0.0396 0.0297 0.0297 0.0297 0.0169 0.0192

50 Bias 0.0215 0.0223 0.0223 0.0162 0.0171 0.0097 0.0101 0.0101 0.0072 0.0076
MSE 0.0351 0.0352 0.0352 0.0257 0.0269 0.0169 0.0170 0.0170 0.0126 0.0131

(1.25, 0.5) 0.37 20 Bias 0.0648 0.0698 0.0698 0.0144 0.0352 0.0374 0.0399 0.0399 0.0106 0.0214
Scheme 2 MSE 0.1122 0.1136 0.1136 0.0326 0.0527 0.0516 0.0522 0.0522 0.0176 0.0259

30 Bias 0.0417 0.0450 0.0449 0.0219 0.0278 0.0211 0.0228 0.0228 0.0113 0.0142
MSE 0.0700 0.0706 0.0706 0.0353 0.0424 0.0318 0.0320 0.0320 0.0172 0.0201

50 Bias 0.0245 0.0265 0.0265 0.0187 0.0198 0.0124 0.0134 0.0134 0.0095 0.0101
MSE 0.0385 0.0387 0.0387 0.0273 0.0288 0.0172 0.0173 0.0173 0.0126 0.0132

(1.5, 0.15) 0.52 20 Bias 0.0630 0.0697 0.0698 -0.0009 0.0295 0.0328 0.0362 0.0362 0.0001 0.0157
Scheme 3 MSE 0.1293 0.1301 0.1302 0.0281 0.0539 0.0565 0.0570 0.0570 0.0160 0.0261

30 Bias 0.0433 0.0477 0.0478 0.0179 0.0269 0.0175 0.0197 0.0198 0.0058 0.0101
MSE 0.0796 0.0800 0.0801 0.0337 0.0442 0.0336 0.0338 0.0339 0.0168 0.0203

50 Bias 0.0235 0.0261 0.0261 0.0160 0.0178 0.0125 0.0138 0.0138 0.0086 0.0095
MSE 0.0445 0.0446 0.0447 0.0288 0.0314 0.0194 0.0195 0.0195 0.0135 0.0143

none-informative and informative priors. For non-informative prior (prior1), a1 = a2 = b1 = b2 = 0 and for

informative prior(prior 2), hyperparameters are taken as a1 = 4, b1 = 4, a2 = 2, b2 = 4. In order to obtain the

Bayesian estimates using Gibbs sampling we set N = 10000 and b=1000. Under of these setting and based

on M=10000 simulated middle censored samples the estimated biases and mean squared errors (MSEs)of

"MLE", "BL" and "BG" are listed in Table1. From Table 1, It is observed that for a fixed PC, as the sample

size n increases, the biases and MSEs decreases for "MLE" and Bayesian estimates based on prior 1. Also,

for a fixed sample size, by increasing PC, MSEs of all estimates become a little bit large. As expected, the

Bayesian estimates based on prior 2 are better than the corresponding Bayesian estimates based on prior 1.

Also in the cases of prior 2, "BL" gives smaller biases and MSEs in comparison with "BG".

References

[1] K. Ahmadi, M. Rezaei and F. Yousefzadeh, Point predictors of the latent failure times of censored units
in progressively Type-II censored competing risks data from the exponential distributions, Journal of
Statistical Computation and Simulation. 86(2016),1620–1634.

[2] M. J. Crowder, Classical Competing Risks, Chapman & Hall/CRC, New York, 2001.

[3] D. V. Lindley, Approximate bayesian methods, Trabajos de Stadistca. 31(1980), 223–245.

[4] S. R. Jammalamadaka and V. Mangalam, Non-parametric estimation for middle censored data, Journal
of Nonparametric Statistics. 15(2003), 253–265.

24

Archive of SID

www.SID.ir

http://www.sid.ir

