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Abstract
This paper deals with the Legendre wavelet (LW) collocation method for the numerical solution of the
radial Schrödinger Equation for free particle (electron) in spherical coordinate. Approximately analytical
also numerical results of the ground state mode l = 0, of wave function or probability density function
R(r), has been presented and compared with the exact solution.
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1. Introduction

One of the most important eigenvalue equations in physics is the Schrödinger’s wave
equation. For a particle mass m in the potential V(r) is:

−
~2

2m
∇2ψ(r) + V(r) = Eψ(r) (1)

In which ψ(r) is the particle wave function and E is an energy eigenvalues [1]. For
one-dimensional potential V(x), equation (1) is as follow;

−
~2

2m
d2ψ(x)

dx2 + V(x) = Eψ(x) (2)

The Schrödinger’s wave function, must be convergent as x→ ∞, because:
+∞∫
−∞

ψ(x)ψ∗(x)dx = 1, (3)

which means that the particle must be somewhere in the x axes [1]. The first derivative
of the wave function also must be continuous as if, it’s second derivative which is
appearing in the equation (2), could be exist.

The numerical solution of the above equation is the subject of many research in the
last two decades. This equation has the analytical answers for the few potential energy
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V(r). For many potentials, in physics and chemistry, it cannot be solved analytically.
So in quantum mechanics, the numerical or approximately analytical solution of the
Schrödinger’s wave equation is a real need. The aim of this paper is to study and
obtain the results of the new approach of, Legendre wavelet expansion of the solution
of Eq. (1). comparison will be made whit the other well known numerical solution’s
methods.

2. Schrödinger equation for free particle

In the spherical coordinate, Radial Schrödinger equation for the central potential
V(r) as follows:[

d2

dr2 +
2
r

d
dr

]
R(r) +

2µ
~2

[
E + V(r) −

l(l + 1)~2

2µr2

]
R(r) = 0 (4)

µ is the reduced mass of system, l is the orbital quantum number and R(r) is the radial
wave function. In free space, particle moves without any potential energy V(r) = 0,
thus: [

d2

dr2 +
2
r

d
dr

]
R(r) +

2µ
~2

[
E −

l(l + 1)~2

2µr2

]
R(r) = 0. (5)

For simplicity, rewrite Eq. (5) in dimensionless form as [1]:

d2R(ρ)
dρ2 +

2
ρ

dR(ρ)
dρ

−
l(l + 1)
ρ2 R(ρ) + R(ρ) = 0 (6)

where:

ρ =

√
2µ|E|
~2 r. (7)

With assumuming that particle is electron, we have:

2µ
~2 =

2mec2

~2c2 '
2 × 0.511 × 106(eV)

(1973)2(eV.A◦)2 ' 0.26246 (
1

eV.A◦2 ). (8)

From quantum mechanics it is known that, r2|R(r)|2 represents the probability density
of finding the particle in place of r from the center of coordinate. State which particle
have it’s minimum energy, called the ground state. In this state l = 0 and the initial
conditions R(r)|r=0 = 1 and dR

dr

∣∣∣
r=0 = 0, is imposed maximum presence of particle at

the origin.

3. Method of solution

Consider the the Schrödinger equation (5). First, we approximate R(t) in terms of
the LWs [2, 3] as follows

R(r) ' CT Ψ(r) = ΨT (r)C, (9)

Archive of SID

www.SID.ir

http://www.sid.ir


Numerical study of Schrödinger Equation 3

where C is the LWs coefficient vector. By using the approximate R(t) ' CT Ψ(t) and
operational matrix of derivative D, the residual function for the Schrödinger equation
in the ground state l = 0, can be written as

Res(r) = CT
[
D2 +

2
r

D
]
Ψ(r) +

2µ
~2 CT [E − 0] Ψ(r), (10)

Hereafter, in order to approximate solution of the Schrödinger equation (5) with initial
conditions, as in the typical collocation method, we generate 2k(M + 1) − 2 equations
by applying

Res(ri) = 0, i = 1, 2..., 2k M − r. (11)

Moreover, by using following initial condition:

CT Ψ(10−4) = 1, (12)

CT DΨ(10−4) = 0, (13)

Eqs. (11) together with (12) and (13) generate a system of 2k(M + 1) algebraic
equations for 2k(M + 1) unknown elements of the unknown vector C. This system
can be solved for unknown coefficient vector C and unknown function R(r) can be
obtained by substituting the obtained vector C in Eq. (9).

With the above considerations, approximate analytical LW expansion of wave
function, R(r), with M = 8, k = 0 is obtained as follow:

R(r) '



0.0000000 r < 0
−0.00018597601r8 + 0.00083651506r7−

−0.0015816998r6 + 0.0016209070r5−

−0.00041023806r4 + 0.00035908484r3−

−0.043819796r2 + 0.00000875837r+

+1.0000001

0 ≤ r < 1

0.0000000 1 < r.

(14)

Numerical results for the solution of the radial Schrödinger Eq. (5) in the case of l = 0,
is shown in Table 1, for various methods.

4. Conclusion

In this paper a new approach, Legendre wavelet (LW) is used and an approximate
analytic expansion is derived for radial wave function of free electron in its ground
state. Numerical results obtained from LW expansion, compared with exact and other
well known numeric methods in Table 1. Runge Kutta Fehlberg and LW expansion
methods, are shown accurate results. Forth order Runge Kutta method and Modified
Euiler method (Heun) both with step size 0.1, are shown less accurate results than
others.
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Table 1. Comparison of the numerical solution for the radial Schrödinger equation in the ground state
of the free electron R(r)

r Exact RKF45 RK4 HUEN LW
solution h = 0.1 h = 0.1 expansion

0.1 0.99956 0.99956 0.99869 0.99869 0.99956
0.2 0.99825 0.99825 0.99777 0.99738 0.99825
0.3 0.99607 0.99607 0.99574 0.99541 0.99607
0.4 0.99302 0.99302 0.99277 0.99251 0.99302
0.5 0.98910 0.98910 0.98891 0.98869 0.98910
0.6 0.98433 0.98433 0.98417 0.98398 0.98433
0.7 0.97870 0.97870 0.97857 0.97841 0.97870
0.8 0.97224 0.97224 0.97212 0.97198 0.97224
0.9 0.96494 0.96494 0.96484 0.96472 0.96494
1.0 0.95683 0.95683 0.95674 0.95662 0.95683
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