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Solving the wave equation with shearlet frames
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Abstract

In this paper, we apply parseval shearlet frames to solve the wave equation. To this end, using the
Plancherel’s theorem, we calculate the shearlet coefficients.
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1. Introduction

In the context of seismic oil and gas exploration, the wave equation is the important
factor to establish the link between the earth properties and the observed data at the
surface. In the past, several traditional methods are proposed for solving the wave
equation, including the finite difference method [1], the pseudospectral method [2], the
finite element method. In recent years, wavelets are used to solve the wave equation.
Compared with wavelets, it seams that shearlets are more efficient for solving the wave
equation [5].

A discrete shearlet system associated with ψ ∈ L2(R2) is defined by

{ψ j,k,m = a−
3
4 j

0 ψ(S kAa− j
0
· −m) : j, k ∈ Z,m ∈ Z2}, a0 > 0, (1)

where the parabolic scaling matrices Aa0 and the shearing matrix S k are given by

Aa0 =

a0 0

0 a
1
2
0

 , S k =

[
1 k
0 1

]
. (2)

The discrete shearlet transform of f ∈ L2(R2) is the mapping defined by

f 7→ SHψ f ( j, k,m) = ⟨ f , ψ j,k,m⟩, ( j, k,m) ∈ Z × Z × Z2.
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2. Main result

We start with the construction of a tight frame of shearlets for L2(R2). Let ϕ be the
scaling function of a Meyer wavelet. For ξ = (ξ1, ξ2) ∈ R2, let Φ̂(ξ) = Φ̂(ξ1, ξ2) =
ϕ̂(ξ1)ϕ̂(ξ2) and

W1(ξ) = W1(ξ1, ξ2) =
√
Φ̂2(2−2ξ1, 2−2ξ2) − Φ̂2(ξ1, ξ2).

It follows that

Φ̂2(ξ1, ξ2) −
∑
j≥0

W2
1 (2−2 jξ1, 2−2 jξ2) = 1, for (ξ1, ξ2) ∈ R2.

Notice that W2
1 j
= W2

1 (2−2 j·). In particular, the functions W2
1 j
, j ≥ 0, produce a smooth

tiling of the frequency plane into Cartesian coronae:
∑

j≥0 W2
1 (2−2 jξ) = 1, for ξ ∈

R2\[− 1
8 ,

1
8 ]2 ⊂ R2. Next, let W2 ∈ C∞(R) be chosen so that suppW2 ⊂ [1, 1] and

|W2(ζ − 1)|2 + |W2(ζ)|2 + |W2(ζ + 1)|2 = 1, for |ζ | ≤ 1.

In addition, we will assume that W2(0) = 1 and that W (n)
2 (0) = 0 for all n ≥ 1. Using

this notation we state the following definition [3, 4].

Definition 2.1. For ξ = (ξ1, ξ2) ∈ R2, the shearlet system for L2(R2) is defined as the
countable collection of functions

{ψ j,l,k : j ≥ 0,−2 j ≤ l ≤ 2 j, k ∈ Z2}, (3)

where
ψ̂ j,l,k(ξ) = |detA4|−

j
2 W1(2−2 jξ)W2(ξA− j

4 S −l
1 )e2πiξA− j

4 S −l
1 k,

and A4, S 1 are given by (2).

Using the above observation it can be shown that the shearlet system (3) is a tight
frame [3].

Theorem 2.2. The shearlet system (3) is a tight frame for L2(R2).

Because of the shearlet system (3) forms a tight frame, we can expand a function
f ∈ L2(R2) as a series of shearlet

f =
∑
j,l,k

⟨ f , ψ j,l,k⟩ψ j,l,k, (4)

We denote the shearlet coefficients ⟨ f , ψ j,l,k⟩ by C j,l,k. According to the Plancherel’s
theorem, we have

C j,l,k = ⟨ f , ψ j,l,k⟩ = ⟨ f̂ , ψ̂ j,l,k⟩

=
1

(2π)2

∫
R2

f̂ (ξ)ψ̂ j,l,k(ξ)dξ

=
1

(2π)2

∫
R2

f̂ (ξ)2−
3
2 jW1(2−2 jξ)W2(ξA− j

4 S −l
1 )e2πiξA− j

4 S −l
1 kdξ

(5)
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Now with the aid of shearlet coefficients we solve the wave equation. We consider the
wave equation as follows

∂2u(x, t)
∂t2 = c2∆u(x, t),

u(x, t)|t=0 = u1(x),
∂u(x, t)
∂t
|t=0 = u2(x),

where x = (x1, x2) ∈ R2 and ∆u(x, t) = ∂2u(x,t)
∂x2

1
+

∂2u(x,t)
∂x2

2
. The shearlet coefficients (5) for

u are defined by

C j,l,k =
1

(2π)2

∫
R2

û(ξ)ψ̂ j,l,k(ξ)dξ,

C∆j,l,k =
1

(2π)2

∫
R2
∆̂u(ξ)ψ̂ j,l,k(ξ)dξ.

By the properties of Fourier transform for derivative, we have

∆̂u(ξ1, ξ2) = ((iξ1)2 + (iξ2)2)û(ξ) = −|ξ|2û(ξ). (6)

Finally, setting (6) in (5) and applying a change of variables, we obtain the coefficient
shearlet associated to u. substituting the coefficient shearlet in (4), we obtain the
desirable result.

References
[1] R. M. Alford, K. R. Kelly and D. M. Boore, Accuracy of finite difference modeling of the

acoustic wave equation, Geophysics 39 (1974) 834-842.
[2] J. Gazdag, Modeling of the acoustic wave equation with transform methods, Geophysics 46.6

(1981) 854-859.
[3] K. Guo and D. Labate, The construction of smooth Parseval frames of shearlets, Mathematical

Modelling of Natural Phenomena 8.1 (2013) 82-105.
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