Submitted to the 5st Seminar on Harmonic Analysis and Applications Organized by the Iranian Mathematical Society January 18–19, 2017, Ferdowsi University of Mashhad, Iran

Transitivity Property and Extended Weil Formula

FATEMEH ESMAEELZADEH*

Abstract

For a locally compact group *G* and two closed subgroups *H*, *N* of *G*, we are going to write $\mu_{G/H}$ as the integral, with respect to $\mu_{G/N}$ of a family of measures on *G/H* indexed by the points of *G/N*, in which $\mu_{G/H}$ and $\mu_{G/N}$ are measures on quotient spaces *G/H* and *G/N*, respectively.

2010 *Mathematics subject classification:* Primary 43A05, Secondary 43A85. *Keywords and phrases:* Quotient spaces, Canonical mapping, Proper, Integrable function, Weil formula..

1. Introduction

Let *G* be a locally compact group and *H* be a closed subgroup of *G* with left Haar measures λ and λ_H , respectively. Consider *G*/*H* as a quotient space on which *G* acts from the left and a Radon measure μ on *G*/*H* is said to be *G*-invariant if $\mu_x(yH) = \mu(yH)$ for all $x, y \in G$, where μ_x is defined by $\mu_x(E) = \mu(xE)$ (for Borel subsets *E* of *G*/*H*). It is well known that there is a *G*-invariant Radon measure μ on *G*/*H* if and only if $\Delta_G|_H = \Delta_H$, where Δ_G, Δ_H are the modular functions on *G* and *H*, respectively. In this case we have,

$$\int_{G} f(x)d\lambda(x) = \int_{G/H} Pf(xH)d\mu(xH) = \int_{G/H} \int_{H} f(xh)d\lambda_{H}(h)d\mu(xH), \quad (1)$$

in which $Pf(xH) = \int_H f(xh) d\lambda_H(h)$ is a continuous linear map from $C_c(G)$ onto $C_c(G/H)$.

The formula (1) is called Weil formula. It has been shown that if λ be a positive Radon measure on *G* such that

$$d\lambda(xh) = \Delta_H(h)d\lambda(x),$$

for $h \in H$, one can then form a unique positive Radon measure $\mu_{G/H}$ on quotient space G/H (For more details see [3, 5, 6]).

^{*} speaker

2

F. ESMAEELZADEH

2. Main result

Let *G* be a locally compact group and *H*, *N* be two closed subgroups of *G* such that $H \subseteq N$ and $\Delta_N|_H = \Delta_H$. We denote by q_N, q_H, p , the canonical mappings of *G* onto *G*/*N*, of *G* onto *G*/*H* and of *N* onto *N*/*H*. Let λ_N and λ_H be the left Haar measures on *N* and *H*, respectively. Since $\Delta_N|_H = \Delta_H$, then there exists a *G*-invariant measure $\mu_{N/H}$ on *N*/*H*. On the otherhand, if λ is a left Haar measure on *G* such that $d\lambda(xh) = \Delta_H(h)d\lambda(x)$, one can find Radon measures $\mu_{G/N}, \mu_{G/H}$ on quotient spaces *G*/*N* and *G*/*H*. Then it is easy to check that, the mapping $(x, n) \mapsto q_H(xn)$ of $G \times N$ into *G*/*H* is continuous. Since $q_H(xnh) = q_H(xn)$, for all $h \in H$, this mapping defines a continuous mapping of $G \times (N/H)$ into *G*/*H*. Whence for each fixed $x \in G$, the mapping ψ_x of *N* into *G* such that $\psi_x(n) = xn$, defines a mapping ω_x of *N*/*H* into *G*/*H* in which

$$\omega_x(p(n)) = q_H(\psi_x(n)) = q_H(xn)$$

It is easy to show that $\psi_{xn} = \psi_x o \varrho_N(n)$, therefore that $\omega_{xn} = \omega_x o \varrho_{N/H}(n)$, for all $n \in N$, in which $\varrho_N(n)(n') = nn'$. The following lemma shows that the map ω_x is proper.

Lemma 2.1. Let *E* be a compact subset of *G*/*H* and *K* be a compact subset of *G*. Then $\bigcup_{x \in K} \omega_x^{-1}(E)$ is relatively compact in *N*/*H*. In particular, $\bigcup_{x \in K} \omega_x^{-1}(E)$ is contained in a compact subset of *N*/*H*.

PROOF. Let *F* be a compact subset of *G* such that $q_H(F) = E$. Let *L* be the set of $n \in N$ such that Kn intersects *F*. Then *L* is compact (see [1], ChapterIII, $\oint 4.5$, Theorem1). Let $n \in N$, such that $p(n) \in \bigcup_{x \in K} \omega_x^{-1}(E)$. Thus there exists $x \in K$ such that $\omega_x(p(n)) \in E$. i.e. $q_H(xn) \in E$ and since $q_H(F) = E$, there exists $h \in H$, $xnh \in F$. Then $nh \in L$. So $p(nh) = p(n) \in p(L)$. That is $\bigcup_{x \in K} \omega_x^{-1}(E) \subseteq p(L)$.

Let $\mathcal{M}(N/H)$ and $\mathcal{M}(G/H)$ be complex measure spaces on quotient spaces N/Hand G/H, respectively, as introduced in [6]. Lemma 2.1 shows that the mapping ω_x is proper. Then ω_x extends continuously to a map from $\mathcal{M}(N/H)$ into $\mathcal{M}(G/H)$ ([4], Section 4.5).

Now let $\varphi \in C_c(G/H)$. Define the function Ψ of *G* into $\mathcal{M}(G/H)$ such that

$$\Psi(x) = \langle \varphi, \omega_x(\mu_{N/H}) \rangle = \int_{N/H} \varphi(\omega_x(p(n))d\mu_{N/H}(p(n)).$$

The function Ψ is continuous and compact support. Moreover, since the measure $\mu_{N/H}$ is *G*-invariant, we have

Transitivity Property and Extended Weil Formula

$$\begin{split} \Psi(xn) &= \langle \varphi, \omega_{xn}(\mu_{N/H}) \rangle \\ &= \langle \varphi, \omega_{x} o \varrho_{N/H}(n)(\mu_{N/H}) \rangle \\ &= \int_{N/H} \varphi(\omega_{x} o \varrho_{N/H}(n)(p(n'))) d\mu_{N/H}(p(n')) \\ &= \int_{N/H} \varphi(\omega_{x}(nn'H)) d\mu_{N/H}(p(n')) \\ &= \int_{N/H} \varphi(\omega_{x}(n'H)) d\mu_{N/H}(p(n')) \\ &= \langle \varphi, \omega_{x}(\mu_{N/H}) \rangle \\ &= \Psi(x), \end{split}$$

for $n \in N$. Then the mapping $\tilde{\Psi}$ of G/N into $\mathcal{M}(G/H)$ in which

$$\tilde{\Psi}(q_N(x)) = \langle \varphi, \omega_x(\mu_{N/H}) \rangle,$$

is continuous with compact support, for all $\varphi \in C_c(G/H)$.

Proposition 2.2. Let $\varphi \in C_c(G/H)$. Then

$$\int_{G/N} \langle \varphi, \omega_x(\mu_{N/H}) \rangle d\mu_{G/N}(q_N(x)) = \int_{G/H} \varphi(q_H(x)) d\mu_{G/H}(q_H(x)).$$

PROOF. By (1), for $\varphi \in C_c(G/H)$ we have

.

$$\int_{G/H} \varphi(q_H(x)) d\mu_{G/H}(q_H(x)) = \int_G f(x) d\lambda(x),$$

where
$$\varphi = Pf$$
 and $f \in C_c(G)$. Also,

$$\int_{G/N} \langle \varphi, \omega_x(\mu_{N/H}) \rangle d\mu_{G/N}(q_N(x)) =$$

$$\int_{G/N} \int_{N/H} (Pf(\omega_x(p(n))d\mu_{N/H}(p(n))d\mu_{G/N}(q_N(x))) =$$

$$\int_{G/N} \int_{N/H} \int_H L_x f(nh) d\lambda_H(h) d\mu_{N/H}(p(n)) d\mu_{G/N}(q_N(x)) =$$

$$\int_{G/N} \int_N f(xn) d\lambda_N(n) d\mu_{G/N}(q_N(x)) =$$

$$\int_G f(x) d\lambda(x),$$
in which $L_x f(n) = f(xn)$.

3

Corollary 2.3. (i) Let φ be a $\mu_{G/H}$ -integrable function on G/H. There exists a $\mu_{G/N}$ -negligible subset E of G/N having the following property: if $x \in G$ is such that $q_N(x) \notin E$, then the function $\varphi o \omega_x$ on N/H is $\mu_{N/H}$ -integrable. The integral $\int_{N/H} \varphi(\omega_x(p(n)) d\mu_{N/H}(p(n))$ is a $\mu_{G/N}$ -integrable function and

$$\int_{G/H} \varphi(q_H(x)) d\mu_{G/H}(q_H(x)) = \int_{G/N} d\mu_{G/N}(q_N(x)) \int_{N/H} \varphi(\omega_x(p(n)) d\mu_{N/H}(p(n))).$$
(2)

(ii) suppose that there exists a bounded positive measure $\mu_{G/H}$ on quotient space G/H. Then there exists a bounded positive measure on quotient space N/H. 4

F. ESMAEELZADEH

PROOF. (i) By proposition 2.2 we have,

$$\begin{split} &\int_{G/H} \varphi(q_H(x)) d\mu_{G/H}(q_H(x)) = \\ &\int_{G/N} \langle \varphi, \omega_x(\mu_{N/H}) \rangle d\mu_{G/N}(q_N(x)) = \\ &\int_{G/N} \int_{N/H} (\varphi(\omega_x(p(n))) d\mu_{N/H}(p(n))) d\mu_{G/N}(q_N(x)). \end{split}$$

(ii) The function 1 on G/H is $\mu_{G/H}$ - integrable. By the part (i), the function 1 on N/H is $\mu_{N/H}$ -integrable. Thus $\mu_{N/H}$ is bounded.

Remark 2.4. If $H = \{e\}$, then the Weil formula can be concluded from (2).

References

- [1] N. Bourbaki, *Elements of Mathematics, General Topology*, springer, Verlag Berlin, New york, 1971.
- [2] F. Esmaeelzadeh, R. A. Kamyabi Gol Homogeneous Spaces and Square Integrable Representations, Ann. Funct. Anal. 7 (2016), no 1, 9-16.
- [3] G.B. Folland, *Real Analysis*, Modern techniques and their applications. 2nd ed. Wiley, New York, 1999.
- [4] G.B. Folland, A Course in Abstract Harmonic Analysis, CRC Press, Boca Raton, FL, 1995.
- [5] H. Reiter, J. Stegeman, Classical Harmonic Analysis and Locally compact Group, Claredon press, 2000.

FATEMEH ESMAEELZADEH, Department of Mathematics, Bojnourd Branch, Islamic Azad University, Bojnourd, Iran. e-mail: esmaeelzadeh@boujnourdiau.ac.ir