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Transitivity Property and Extended Weil Formula
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Abstract

For a locally compact group G and two closed subgroups H, N of G, we are going to write µG/H as the
integral, with respect to µG/N of a family of measures on G/H indexed by the points of G/N, in which
µG/H and µG/N are measures on quotient spaces G/H and G/N, respectively.
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1. Introduction

Let G be a locally compact group and H be a closed subgroup of G with left Haar
measures λ and λH , respectively. Consider G/H as a quotient space on which G
acts from the left and a Radon measure µ on G/H is said to be G-invariant if
µx(yH) = µ(yH) for all x, y ∈ G, where µx is defined by µx(E) = µ(xE) (for Borel
subsets E of G/H). It is well known that there is a G-invariant Radon measure µ on
G/H if and only if ∆G |H = ∆H , where ∆G,∆H are the modular functions on G and H,
respectively. In this case we have,∫

G
f (x)dλ(x) =

∫
G/H

P f (xH)dµ(xH) =
∫

G/H

∫
H

f (xh)dλH(h)dµ(xH), (1)

in which P f (xH) =
∫

H f (xh)dλH(h) is a continuous linear map from Cc(G) onto
Cc(G/H).
The formula (1) is called Weil formula. It has been shown that if λ be a positive Radon
measure on G such that

dλ(xh) = ∆H(h)dλ(x),

for h ∈ H, one can then form a unique positive Radon measure µG/H on quotient space
G/H ( For more details see [3, 5, 6]).
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2. Main result

Let G be a locally compact group and H,N be two closed subgroups of G such
that H ⊆ N and ∆N |H = ∆H . We denote by qN , qH , p, the canonical mappings of
G onto G/N, of G onto G/H and of N onto N/H. Let λN and λH be the left Haar
measures on N and H, respectively. Since ∆N |H = ∆H , then there exists a G-invariant
measure µN/H on N/H . On the otherhand, if λ is a left Haar measure on G such that
dλ(xh) = ∆H(h)dλ(x), one can find Radon measures µG/N , µG/H on quotient spaces
G/N and G/H. Then it is easy to check that, the mapping (x, n) 7→ qH(xn) of G × N
into G/H is continuous. Since qH(xnh) = qH(xn), for all h ∈ H, this mapping defines
a continuous mapping of G × (N/H) into G/H. Whence for each fixed x ∈ G, the
mapping ψx of N into G such that ψx(n) = xn, defines a mapping ωx of N/H into G/H
in which

ωx(p(n)) = qH(ψx(n)) = qH(xn).

It is easy to show that ψxn = ψxoϱN(n), thererfore that ωxn = ωxoϱN/H(n), for all n ∈ N,
in which ϱN(n)(n′) = nn′. The following lemma shows that the map ωx is proper.

Lemma 2.1. Let E be a compact subset of G/H and K be a compact subset of G. Then
∪x∈Kω

−1
x (E) is relatively compact in N/H. In particular, ∪x∈Kω

−1
x (E) is contained in a

compact subset of N/H.

Proof. Let F be a compact subset of G such that qH(F) = E. Let L be the set
of n ∈ N such that Kn intersects F. Then L is compact (see [1], ChapterIII,

∮
4.5,

Theorem1). Let n ∈ N, such that p(n) ∈ ∪x∈Kω
−1
x (E). Thus there exists x ∈ K such

that ωx(p(n)) ∈ E. i.e. qH(xn) ∈ E and since qH(F) = E, there exists h ∈ H, xnh ∈ F.
Then nh ∈ L. So p(nh) = p(n) ∈ p(L). That is ∪x∈Kω

−1
x (E) ⊆ p(L). □

Let M(N/H) and M(G/H) be complex measure spaces on quotient spaces N/H
and G/H, respectively, as introduced in [6]. Lemma 2.1 shows that the mapping ωx

is proper. Then ωx extends continuously to a map fromM(N/H) intoM(G/H) ([4],
Section 4.5).
Now let φ ∈ Cc(G/H). Define the function Ψ of G intoM(G/H) such that

Ψ(x) = ⟨φ, ωx(µN/H)⟩ =
∫

N/H
φ(ωx(p(n))dµN/H(p(n)).

The function Ψ is continuous and compact support. Moreover, since the measure µN/H

is G-invariant, we have
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Ψ(xn) = ⟨φ, ωxn(µN/H)⟩
= ⟨φ, ωxoϱN/H(n)(µN/H)⟩
=
∫

N/H φ(ωxoϱN/H(n)(p(n′)))dµN/H(p(n′))

=
∫

N/H φ(ωx(nn′H))dµN/H(p(n′))

=
∫

N/H φ(ωx(n′H))dµN/H(p(n′))

= ⟨φ, ωx(µN/H)⟩
= Ψ(x),

for n ∈ N. Then the mapping Ψ̃ of G/N intoM(G/H) in which

Ψ̃(qN(x)) = ⟨φ, ωx(µN/H)⟩,

is continuous with compact support, for all φ ∈ Cc(G/H).

Proposition 2.2. Let φ ∈ Cc(G/H). Then∫
G/N
⟨φ, ωx(µN/H)⟩dµG/N(qN(x)) =

∫
G/H

φ(qH(x))dµG/H(qH(x)).

Proof. By (1), for φ ∈ Cc(G/H) we have∫
G/H

φ(qH(x))dµG/H(qH(x)) =
∫

G
f (x)dλ(x),

where φ = P f and f ∈ Cc(G). Also,∫
G/N⟨φ, ωx(µN/H)⟩dµG/N(qN(x)) =∫
G/N

∫
N/H(P f (ωx(p(n))dµN/H(p(n))dµG/N(qN(x)) =∫

G/N

∫
N/H(P f (qH(xn))dµN/H(p(n))dµG/N(qN(x)) =∫

G/N

∫
N/H

∫
H Lx f (nh)dλH(h)dµN/H(p(n))dµG/N(qN(x)) =∫

G/N

∫
N f (xn)dλN(n)dµG/N(qN(x)) =∫

G f (x)dλ(x),
in which Lx f (n) = f (xn).

□

Corollary 2.3. (i) Let φ be a µG/H-integrable function on G/H. There exists a
µG/N-negligible subset E of G/N having the following property: if x ∈ G is such
that qN(x) < E, then the function φoωx on N/H is µN/H-integrable. The integral∫

N/H φ(ωx(p(n))dµN/H(p(n) is a µG/N-integrable function and∫
G/H

φ(qH(x))dµG/H(qH(x)) =
∫

G/N
dµG/N(qN(x))

∫
N/H

φ(ωx(p(n))dµN/H(p(n)). (2)

(ii) suppose that there exists a bounded positive measure µG/H on quotient space G/H.
Then there exists a bounded positive measure on quotient space N/H.
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Proof. (i) By proposition 2.2 we have,∫
G/H φ(qH(x))dµG/H(qH(x)) =∫
G/N⟨φ, ωx(µN/H)⟩dµG/N(qN(x)) =∫
G/N

∫
N/H(φ(ωx(p(n))dµN/H(p(n))dµG/N(qN(x)).

(ii) The function 1 on G/H is µG/H- integrable. By the part (i), the function 1 on
N/H is µN/H-integrable. Thus µN/H is bounded. □

Remark 2.4. If H = {e}, then the Weil formula can be concluded from (2).
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