Submitted to the 5st Seminar on Harmonic Analysis and Applications Organized by the Iranian Mathematical Society January 18–19, 2017, Ferdowsi University of Mashhad, Iran

Comparison of the topological centers of a bilinear mapping and its third adjoint

SEDIGHEH BAROOTKOOB*

Abstract

Let $f : X \times Y \to Z$ be a bilinear mapping on normed spaces. In this paper we investigate that are the topological centers of f, w^* -dense in the corresponding topological centers of its extensions f^{***} and f^{****t} ? we show that although it has positive answer on some special cases but this is not true in general.

2010 *Mathematics subject classification:* Primary 46H20; Secondary 46H25. *Keywords and phrases:* bilinear mapping, topological center, Arens regular.

1. Introduction

According to [1] and [2] for every bounded bilinear mapping $f : X \times \mathcal{Y} \to \mathcal{Z}$ (on normed spaces X, \mathcal{Y} and \mathcal{Z}) we have two natural extensions from $X^{**} \times \mathcal{Y}^{**}$ to \mathcal{Z}^{**} . Also the definition of regularity of bilinear mappings mentioned in [1] and [2]. First of all We recall these definitions.

For a bounded bilinear mapping $f : X \times \mathcal{Y} \to \mathcal{Z}$ we define the adjoint $f^* : \mathcal{Z}^* \times \mathcal{X} \to \mathcal{Y}^*$ of f by

$$\langle f^*(z^*, x), y \rangle = \langle z^*, f(x, y) \rangle$$
 $(x \in \mathcal{X}, y \in \mathcal{Y} \text{ and } z^* \in \mathcal{Z}^*).$

Also this process may be repeated to define $f^{**} = (f^*)^* : \mathcal{Y}^{**} \times \mathcal{Z}^* \to \mathcal{X}^*$ and $f^{***} = (f^{**})^* : \mathcal{X}^{**} \times \mathcal{Y}^{**} \to \mathcal{Z}^{**}$. It can readily verified that f^{***} is the unique extension of f for which the maps

$$\cdot \mapsto f^{***}(\cdot, y^{**}), \quad \cdot \mapsto f^{***}(x, \cdot) \quad (x \in \mathcal{X}, y^{**} \in \mathcal{Y}^{**}),$$

are $w^* - w^*$ -separately continuous.

Let f^t be the transpose of f, that is the bounded bilinear mapping $f^t : \mathcal{Y} \times \mathcal{X} \longrightarrow \mathcal{Z}$ defined by $f^t(y, x) = f(x, y)$ ($x \in \mathcal{X}, y \in \mathcal{Y}$). If we continue the latter process with f^t instead of f, we come to the bounded bilinear mapping $f^{t***t} : \mathcal{X}^{**} \times \mathcal{Y}^{**} \to \mathcal{Z}^{**}$, that is the unique extension of f for which the maps

$$\cdot \mapsto f^{t***t}(x^{**}, \cdot), \quad \cdot \mapsto f^{t***t}(\cdot, y) \quad (y \in \mathcal{Y}, x^{**} \in \mathcal{X}^{**}),$$

^{*} speaker

S. BAROOTKOOB

2

are $w^* - w^* -$ continuous.

We define the left topological center $Z_{\ell}(f)$ by

$$Z_{\ell}(f) = \{x^{**} \in \mathcal{X}^{**}; y^{**} \longrightarrow f^{***}(x^{**}, y^{**}) : \mathcal{Y}^{**} \longrightarrow \mathcal{Z}^{**} \text{ is } w^* - \text{continuous}\}$$

= $\{x^{**} \in \mathcal{X}^{**}; f^{***}(x^{**}, y^{**}) = f^{t***t}(x^{**}, y^{**}) \text{ for every } y^{**} \in \mathcal{Y}^{**}\},$

and the right topological center $Z_r(f)$ of f by

$$Z_r(f) = \{y^{**} \in \mathcal{Y}^{**}; x^{**} \longrightarrow f^{t^{***t}}(x^{**}, y^{**}) : \mathcal{X}^{**} \longrightarrow \mathcal{Z}^{**} \text{ is } w^* - \text{continuous} \}$$

= $\{y^{**} \in \mathcal{Y}^{**}; f^{***t}(x^{**}, y^{**}) = f^{t^{***t}}(x^{**}, y^{**}) \text{ for every } x^{**} \in \mathcal{X}^{**} \}.$

Clearly, $X \subseteq Z_{\ell}(f)$, $\mathcal{Y} \subseteq Z_r(f)$ and $Z_r(f) = Z_{\ell}(f^t)$.

A bounded bilinear mapping f is said to be Arens regular if $f^{***} = f^{t***t}$. This is equivalent to $Z_{\ell}(f) = X^{**}$ as well as $Z_r(f) = \mathcal{Y}^{**}$. The mapping f is said to be left (resp. right) strongly Arens irregular if $Z_{\ell}(f) = X$ (resp. $Z_r(f) = \mathcal{Y}$).

We know that $\mathcal{X} \subseteq Z_{\ell}(f) \subseteq \mathcal{X}^{**} \subseteq Z_{\ell}(f^{***}) \subseteq \mathcal{X}^{****}$ and $\mathcal{Y} \subseteq Z_{r}(f) \subseteq \mathcal{Y}^{**} \subseteq Z_{r}(f^{***}) \subseteq \mathcal{Y}^{****}$ in general. In this paper we investigate the relationship of $\overline{Z_{\ell}(f)}^{w^*}$ with $Z_{\ell}(f^{***})$ and $Z_{\ell}(f^{t***t})$ and similarly for the right topological centers.

2. Main results

Theorem 2.1. (i)
$$\overline{Z_{\ell}(f)}^{w^*} \subseteq Z_{\ell}(f^{***})$$
 if and only if $\overline{Z_{\ell}(f)}^{w^*} \subseteq Z_{\ell}(f^{***t})$
(ii) $\overline{Z_{r}(f)}^{w^*} \subseteq Z_{r}(f^{***})$ if and only if $\overline{Z_{r}(f)}^{w^*} \subseteq Z_{r}(f^{t***t})$

Corollary 2.2. If f is Arens regular then f^{***} is Arens regular if and only if f^{***t} is Arens regular.

Corollary 2.3. If f^{***} is Arens regular then $\overline{Z_{\ell}(f)}^{w^*} \subseteq Z_{\ell}(f^{t***t})$, and if f^{t***t} is Arens regular then $\overline{Z_{\ell}(f)}^{w^*} \subseteq Z_{\ell}(f^{***t})$.

Theorem 2.1 says that it is sufficient to investigate only the relationship of the topological centers f^{***} and w^* -cluster of the topological centers of f.

Also it is easy to see that if X is reflexive then $\overline{Z_{\ell}(f)}^{w^*} = X = Z_{\ell}(f^{***})$ and if \mathcal{Y} is reflexive then $\overline{Z_r(f)}^{w^*} = X = Z_r(f^{***})$. So we assume that X and \mathcal{Y} are not reflexive. On the other hand in [3] it is shown that there is an Arens regular bilinear mapping f such that f^{***} is not Arens regular. Therefore in this case $Z_{\ell}(f^{***}) \subsetneq \overline{Z_{\ell}(f)}^{w^*}$ and the equality are not valid in general.

In the sequel we investigate the relationship $\overline{Z_{\ell}(f)}^{w^*}$ with $Z_{\ell}(f^{***})$ and $\overline{Z_{r}(f)}^{w^*}$ with $Z_{r}(f^{***})$ in special cases. The following theorem has a proof similar to the proof of theorem 2.1.

Theorem 2.4. (i) For each
$$x^{****} \in \overline{Z_{\ell}(f)}^{w^*}$$
 and $y^{****} \in \mathcal{Y}^{****}$,
 $f^{******}(x^{****}, y^{****}) = f^{*****}(x^{****}, y^{****})$

Comparison of the topological centers of a bilinear mapping and its third adjoint

3

and

 $f^{t******t}(x^{****}, y^{****}) = f^{***t***t}(x^{****}, y^{****}).$

(ii) For each
$$x^{****} \in Z_{\ell}(f^{***})$$
 and $y^{****} \in \mathcal{Y}^{****}$,

$$f^{******}(x^{****}, y^{****}) = f^{***l***l}(x^{****}, y^{****})$$

(iii) For each
$$y^{****} \in \overline{Z_r(f)}^{w^*}$$
 and $x^{****} \in X^{****}$,

$$f^{******}(x^{****}, y^{****}) = f^{i^{***i^{***}}}(x^{****}, y^{****})$$

and

$$f^{t******t}(x^{****}, y^{****}) = f^{***t***t}(x^{****}, y^{****})$$

(*iv*) For each $y^{****} \in Z_r(f^{***})$ and $x^{****} \in X^{****}$,

$$f^{******}(x^{****}, y^{****}) = f^{***t^{***t}}(x^{****}, y^{****})$$

Corollary 2.5. (i)
$$f^{*****}|_{\overline{Z_{\ell}(f)}^{w^{*}} \times y^{****}} = f^{I^{******}}|_{\overline{Z_{\ell}(f)}^{w^{*}} \times y^{****}}$$
 if and only if $\overline{Z_{\ell}(f)}^{w^{*}} \subseteq Z_{\ell}(f^{***})$ if and only if $f^{******}|_{\overline{Z_{\ell}(f)}^{w^{*}} \times y^{****}} = f^{I^{******}}|_{\overline{Z_{\ell}(f)}^{w^{*}} \times y^{****}}$.
(ii) $f^{******}|_{X^{****} \times \overline{Z_{r}(f)}^{w^{*}}} = f^{I^{******}}|_{X^{****} \times \overline{Z_{r}(f)}^{w^{*}}}$ if and only if $\overline{Z_{r}(f)}^{w^{*}} \subseteq Z_{r}(f^{***})$ if and only if $f^{***I***}|_{X^{****} \times \overline{Z_{r}(f)}^{w^{*}}}$.
(iii) $If Z_{\ell}(f^{***}) \subseteq \overline{Z_{\ell}(f)}^{w^{*}}$ then $f^{***I***I}|_{Z_{\ell}(f^{***}) \times y^{****}} = f^{I^{***I***}}|_{Z_{\ell}(f^{***}) \times y^{****}}$ and $f^{******}|_{Z_{\ell}(f^{***}) \times y^{****}} = f^{I^{******}}|_{Z_{\ell}(f^{***}) \times y^{****}}$.

$$(iv) If Z_r(f^{***}) \subseteq \overline{Z_r(f)}^{w^*} \text{ then } f^{***I***I} |_{X^{****} \times Z_r(f^{***})} = f^{I^{***I***}} |_{X^{****} \times Z_r(f^{***})} \text{ and}$$
$$f^{******} |_{X^{****} \times Z_r(f^{***})} = f^{I^{*****I}} |_{X^{****} \times Z_r(f^{***})}.$$

Corollary 2.6. If $f^{t***t***} = f^{***t***t}$, then $\overline{Z_{\ell}(f)}^{w^*} \subseteq Z_{\ell}(f^{t***t})$ and $\overline{Z_{r}(f)}^{w^*} \subseteq Z_{r}(f^{t***t})$

on the other hand by two routine w^* -limit, we have the following proposition.

Proposition 2.7. If $X^{**} \subseteq \overline{Z_{\ell}(f)}^{w^*}$ then $Z_{\ell}(f^{***}) \subseteq \overline{Z_{\ell}(f)}^{w^*}$.

Note that if *f* is Arens regular, then $Z_{\ell}(f^{***}) \subseteq \overline{Z_{\ell}(f)}^{w^*}$ and if it is strongly Arens irregular then it maybe $Z_{\ell}(f^{***}) \not\subseteq \overline{Z_{\ell}(f)}^{w^*}$.

References

- [1] R. ARENS, Operations induced in function classes, Monatsh. Math. 55 (1951) 1-19.
- [2] R. ARENS, The adjoint of a bilinear operation, Proc. Amer. Math. Soc. 2 (1951) 839-848, 1951.
- [3] S. BAROOTKOOB AND H. R. EBRAHIMI VISHKI, NOn-Arens regularity of the third adjoint of certain module operations, *The* 45th Annual Iranian Mathematics conference August 26-29 2014, 256– 258.

Archive of SID

4

S. BAROOTKOOB

SEDIGHEH BAROOTKOOB, Faculty of Basic Sciences, University of Bojnord, P.O. Box 1339, Bojnord, Iran e-mail: s.barutkub@ub.ac.ir