Submitted to the 5st Seminar on Harmonic Analysis and Applications Organized by the Iranian Mathematical Society January 18–19, 2017, Ferdowsi University of Mashhad, Iran

Comparison of the topological centers of a bilinear mapping and its third adjoint

SEDIGHEH BAROOTKOOB*

Abstract

Let $f: X \times Y \to Z$ be a bilinear mapping on normed spaces. In this paper we investigate that are the topological centers of f, w^* -dense in the corresponding topological centers of its extensions f^{***} and f^{****} ? we show that although it has positive answer on some special cases but this is not true in general.

2010 *Mathematics subject classification:* Primary 46H20; Secondary 46H25. *Keywords and phrases:* bilinear mapping, topological center, Arens regular.

1. Introduction

According to [1] and [2] for every bounded bilinear mapping $f: \mathcal{X} \times \mathcal{Y} \to \mathcal{Z}$ (on normed spaces \mathcal{X}, \mathcal{Y} and \mathcal{Z}) we have two natural extensions from $\mathcal{X}^{**} \times \mathcal{Y}^{**}$ to \mathcal{Z}^{**} . Also the definition of regularity of bilinear mappings mentioned in [1] and [2]. First of all We recall these definitions.

For a bounded bilinear mapping $f: \mathcal{X} \times \mathcal{Y} \to \mathcal{Z}$ we define the adjoint $f^*: \mathcal{Z}^* \times \mathcal{X} \to \mathcal{Y}^*$ of f by

$$\langle f^*(z^*, x), y \rangle = \langle z^*, f(x, y) \rangle$$
 $(x \in \mathcal{X}, y \in \mathcal{Y} \text{ and } z^* \in \mathcal{Z}^*).$

Also this process may be repeated to define $f^{**}=(f^*)^*:\mathcal{Y}^{**}\times\mathcal{Z}^*\to\mathcal{X}^*$ and $f^{***}=(f^{**})^*:\mathcal{X}^{**}\times\mathcal{Y}^{**}\to\mathcal{Z}^{**}$. It can readily verified that f^{***} is the unique extension of f for which the maps

$$\cdot \mapsto f^{***}(\cdot, y^{**}), \quad \cdot \mapsto f^{***}(x, \cdot) \quad (x \in X, y^{**} \in \mathcal{Y}^{**}),$$

are $w^* - w^*$ -separately continuous.

Let f^t be the transpose of f, that is the bounded bilinear mapping $f^t: \mathcal{Y} \times \mathcal{X} \longrightarrow \mathcal{Z}$ defined by $f^t(y, x) = f(x, y)$ ($x \in \mathcal{X}, y \in \mathcal{Y}$). If we continue the latter process with f^t instead of f, we come to the bounded bilinear mapping $f^{t***t}: \mathcal{X}^{**} \times \mathcal{Y}^{**} \to \mathcal{Z}^{**}$, that is the unique extension of f for which the maps

$$\cdot \mapsto f^{t***t}(x^{**}, \cdot), \quad \cdot \mapsto f^{t***t}(\cdot, y) \quad (y \in \mathcal{Y}, x^{**} \in \mathcal{X}^{**}),$$

^{*} speaker

2 S. Barootkoob

are $w^* - w^*$ – continuous.

We define the left topological center $Z_{\ell}(f)$ by

$$Z_{\ell}(f) = \{x^{**} \in \mathcal{X}^{**}; y^{**} \longrightarrow f^{***}(x^{**}, y^{**}) : \mathcal{Y}^{**} \longrightarrow \mathcal{Z}^{**} \text{ is } w^{*} - \text{continuous} \}$$

$$= \{x^{**} \in \mathcal{X}^{**}; f^{***}(x^{**}, y^{**}) = f^{l***t}(x^{**}, y^{**}) \text{ for every } y^{**} \in \mathcal{Y}^{**} \},$$

and the right topological center $Z_r(f)$ of f by

$$Z_r(f) = \{y^{**} \in \mathcal{Y}^{**}; x^{**} \longrightarrow f^{t***t}(x^{**}, y^{**}) : \mathcal{X}^{**} \longrightarrow \mathcal{Z}^{**} \text{ is } w^* - \text{continuous} \}$$

$$= \{y^{**} \in \mathcal{Y}^{**}; f^{***}(x^{**}, y^{**}) = f^{t***t}(x^{**}, y^{**}) \text{ for every } x^{**} \in \mathcal{X}^{**} \}.$$

Clearly,
$$X \subseteq Z_{\ell}(f)$$
, $\mathcal{Y} \subseteq Z_{r}(f)$ and $Z_{r}(f) = Z_{\ell}(f^{t})$.

A bounded bilinear mapping f is said to be Arens regular if $f^{***} = f^{t***t}$. This is equivalent to $Z_{\ell}(f) = \mathcal{X}^{**}$ as well as $Z_{r}(f) = \mathcal{Y}^{**}$. The mapping f is said to be left (resp. right) strongly Arens irregular if $Z_{\ell}(f) = \mathcal{X}$ (resp. $Z_{r}(f) = \mathcal{Y}$).

We know that $X \subseteq Z_{\ell}(f) \subseteq X^{**} \subseteq Z_{\ell}(f^{***}) \subseteq X^{****}$ and $\mathcal{Y} \subseteq Z_{r}(f) \subseteq \mathcal{Y}^{**} \subseteq Z_{r}(f^{***}) \subseteq \mathcal{Y}^{****}$ in general. In this paper we investigate the relationship of $\overline{Z_{\ell}(f)}^{w^{*}}$ with $Z_{\ell}(f^{***})$ and $Z_{\ell}(f^{****})$ and similarly for the right topological centers.

2. Main results

Theorem 2.1. (i)
$$\overline{Z_{\ell}(f)}^{w^*} \subseteq Z_{\ell}(f^{***})$$
 if and only if $\overline{Z_{\ell}(f)}^{w^*} \subseteq Z_{\ell}(f^{***t})$ (ii) $\overline{Z_{r}(f)}^{w^*} \subseteq Z_{r}(f^{***t})$ if and only if $\overline{Z_{r}(f)}^{w^*} \subseteq Z_{r}(f^{t***t})$

Corollary 2.2. If f is Arens regular then f^{***} is Arens regular if and only if f^{t***t} is Arens regular.

Corollary 2.3. If f^{***} is Arens regular then $\overline{Z_{\ell}(f)}^{w^*} \subseteq Z_{\ell}(f^{t***t})$, and if f^{t***t} is Arens regular then $\overline{Z_{\ell}(f)}^{w^*} \subseteq Z_{\ell}(f^{***})$.

Theorem 2.1 says that it is sufficient to investigate only the relationship of the topological centers f^{***} and w^* -cluster of the topological centers of f.

Also it is easy to see that if X is reflexive then $\overline{Z_{\ell}(f)}^{w^*} = X = Z_{\ell}(f^{***})$ and if \mathcal{Y} is reflexive then $\overline{Z_{r}(f)}^{w^*} = X = Z_{r}(f^{***})$. So we assume that X and \mathcal{Y} are not reflexive. On the other hand in [3] it is shown that there is an Arens regular bilinear mapping f such that f^{***} is not Arens regular. Therefore in this case $Z_{\ell}(f^{***}) \subseteq \overline{Z_{\ell}(f)}^{w^*}$ and the equality are not valid in general.

In the sequel we investigate the relationship $\overline{Z_{\ell}(f)}^{w^*}$ with $Z_{\ell}(f^{***})$ and $\overline{Z_{r}(f)}^{w^*}$ with $Z_{r}(f^{***})$ in special cases. The following theorem has a proof similar to the proof of theorem 2.1.

Theorem 2.4. (i) For each
$$x^{****} \in \overline{Z_{\ell}(f)}^{w^*}$$
 and $y^{****} \in \mathcal{Y}^{****}$,
$$f^{******}(x^{****}, y^{****}) = f^{l***l***}(x^{****}, y^{****})$$

and

$$f^{t******t}(x^{****}, y^{****}) = f^{***t***t}(x^{****}, y^{****}).$$

(ii) For each $x^{****} \in Z_{\ell}(f^{***})$ and $y^{****} \in \mathcal{Y}^{****}$

$$f^{*****}(x^{****}, y^{****}) = f^{***t***t}(x^{****}, y^{****}).$$

(iii) For each $y^{****} \in \overline{Z_r(f)}^{w^*}$ and $x^{****} \in X^{****}$,

$$f^{*****}(x^{****}, y^{****}) = f^{f^{***}(x^{***}, y^{***})}$$

and

$$f^{t*****t}(x^{****}, y^{****}) = f^{***t***t}(x^{****}, y^{****})$$

(iv) For each $y^{****} \in Z_r(f^{***})$ and $x^{****} \in X^{****}$,

$$f^{*****}(x^{****}, y^{****}) = f^{***l***l}(x^{****}, y^{****}).$$

Corollary 2.5. (i) $f^{******}|_{\overline{Z_{\ell}(f)}^{w^*} \times \mathcal{Y}^{****}} = f^{l******l}|_{\overline{Z_{\ell}(f)}^{w^*} \times \mathcal{Y}^{****}} \text{ if and only if } \overline{Z_{\ell}(f)}^{w^*} \subseteq Z_{\ell}(f^{***}) \text{ if and only if } f^{***l***l}|_{\overline{Z_{\ell}(f)}^{w^*} \times \mathcal{Y}^{****}} = f^{l***l***}|_{\overline{Z_{\ell}(f)}^{w^*} \times \mathcal{Y}^{****}}.$

(ii)
$$f^{******}|_{X^{*****} \times \overline{Z_r(f)}^{w^*}} = f^{t******l}|_{X^{*****} \times \overline{Z_r(f)}^{w^*}}$$
 if and only if $\overline{Z_r(f)}^{w^*} \subseteq Z_r(f^{***})$ if and only if $f^{***l***l}|_{X^{*****} \times \overline{Z_r(f)}^{w^*}} = f^{t***l***l}|_{X^{*****} \times \overline{Z_r(f)}^{w^*}}.$

(iii) If
$$Z_{\ell}(f^{***}) \subseteq \overline{Z_{\ell}(f)}^{w^*}$$
 then $f^{***l***l}|_{Z_{\ell}(f^{***})\times y^{****}} = f^{l***l***}|_{Z_{\ell}(f^{***})\times y^{****}}$ and

$$f^{******}|_{Z_{\ell}(f^{***})\times\mathcal{Y}^{****}}=f^{t******t}|_{Z_{\ell}(f^{***})\times\mathcal{Y}^{****}}.$$

(iv) If
$$Z_r(f^{***}) \subseteq \overline{Z_r(f)}^{w^*}$$
 then $f^{***l***l}|_{X^{****}\times Z_r(f^{***})} = f^{l***l***}|_{X^{****}\times Z_r(f^{***})}$ and

$$f^{******}|_{X^{****}\times Z_r(f^{***})}=f^{f^{******}t}|_{X^{****}\times Z_r(f^{***})}.$$

Corollary 2.6. If
$$f^{l***l***} = f^{***l***l}$$
, then $\overline{Z_{\ell}(f)}^{w^*} \subseteq Z_{\ell}(f^{l***l})$ and $\overline{Z_{r}(f)}^{w^*} \subseteq Z_{r}(f^{l***l})$

on the other hand by two routine w^* -limit, we have the following proposition.

Proposition 2.7. If
$$X^{**} \subseteq \overline{Z_{\ell}(f)}^{w^*}$$
 then $Z_{\ell}(f^{***}) \subseteq \overline{Z_{\ell}(f)}^{w^*}$.

Note that if f is Arens regular, then $Z_{\ell}(f^{***}) \subseteq \overline{Z_{\ell}(f)}^{w^*}$ and if it is strongly Arens irregular then it maybe $Z_{\ell}(f^{***}) \nsubseteq \overline{Z_{\ell}(f)}^{w^*}$.

References

- [1] R. Arens, Operations induced in function classes, *Monatsh. Math.* **55** (1951) 1-19.
- [2] R. Arens, The adjoint of a bilinear operation, Proc. Amer. Math. Soc. 2 (1951) 839-848, 1951.
- [3] S. BAROOTKOOB AND H. R. EBRAHIMI VISHKI, Non-Arens regularity of the third adjoint of certain module operations, The 45th Annual Iranian Mathematics conference August 26-29 2014, 256– 258.

4

S. Barootkoob

SEDIGHEH BAROOTKOOB, Faculty of Basic Sciences, University of Bojnord, P.O. Box 1339, Bojnord, Iran

e-mail: s.barutkub@ub.ac.ir