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Abstract

For a Lau algebra A with a certain condition we show that the number of topologically left invariant
means on A∗ is equal to the number of topologically left invariant means on LUC(A∗). Using this for
a nondiscrete locally comapct group G we prove that the cardinality of the set of topologically invariant
means on UC(Ĝ) is equal to 22b(G)

. In particular, G is discrete if and only if there is a unique topologically
invariant mean on UC(Ĝ).
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1. Introduction

In [2] Lau introduced and investigated a nice family of Banach algebras under the name
F-algebras; later, F-algebras were termed Lau algebras. In fact, a Banach algebra A
is called a Lau algebra if the dual space A∗ of A is a von Neumann algebra and the
identity element, I ofA∗ is a multiplicative linear functional onA.

Examples of Lau algebras are the group algebra L1(G) and the Fourier algebra
A(G) of a locally compact group G; see [2]. It also includes the Fourier-Stieltjes
algebra B(G) of a topological group G. Moreover, the hypergroup algebra L1(H) and
the measure algebra M(H) of a locally compact hypergroup H with a left Haar measure
are Lau algebras. A particular example of Lau algebras is the quantum group algebra
L1(G) of a locally compact quantum group G.

The main purpose of this paper is to show that for a Lau algebra A satisfying
〈AA0〉 = A0, the cardinality of the set of topologically left invariant means on A∗ is
equal to the cardinality of the set of topologically left invariant means on LUC(A∗).
As an application of this result we show that for a nondiscrete locally comapct group
G, |T LIM(UC(Ĝ))| = 22b(G)

. In particular, we obtain that G is discrete if and only if
there is a unique topologically invariant mean on UC(Ĝ).
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2. Topologically left invariant means on LUC(A∗)

Let A be a Lau algebra. For a linear subspace X of the von Neumann algebra A∗

containing I, the linear functional m ∈ X∗ is called a mean on X if

‖m‖ = m(I) = 1.

For each a ∈ A, and f ∈ A∗, define the element f · a inA∗ by

( f · a)(b) = f (ab),

for all b ∈ A. A linear subspace X of A∗ is called topologically left invariant if
X ·a ⊆ X for all a ∈ A. In this case X is called topologically left introverted if for each
f ∈ X and n ∈ A∗∗ we have n · f ∈ X, where n · f is defined by

(n · f )(a) = n( f · a)

for all a ∈ A. Examples of left introverted subspace of A∗ containing I are A∗ and
the space LUC(A∗) which is the closed linear span inA∗ ofA∗ · A. The elements of
LUC(A∗) is called left uniformly continuous functional.

Definition 2.1. Let A be a Lau algebra and let X be a topologically left invariant
subspace of A∗ containing I. Then m ∈ X∗ is called a topologically left invariant
mean (TLIM) on X if ‖m‖ = m(I) = 1 and 〈m, f · a〉 = I(a)〈m, f 〉 for all f ∈ X and
a ∈ A. We denote the set of all topologically left invariant means on X by T LIM(X∗).

Recall that,A is called left amenable if there is a topologically left invariant mean
on A∗. Before giving the main result, let us recall that for each m ∈ LUC(A∗)∗, we
can define a bounded linear map mL : A∗ → A∗ as follows

mL( f ) = m · f ( f ∈ A∗).

For a Lau algebra A we denote by A0 the closed ideal {a ∈ A : I(a) = 0} and denote
by 〈AA0〉 the closed linear span ofAA0 inA0.

Theorem 2.2. Let A be a Lau algebra with 〈AA0〉 = A0. Then the restriction map
R : T LIM(A∗∗)→ T LIM(LUC(A∗)∗) is a bijection.

Proof. It is easy to see that R is well-defined and injective. We need to prove that R is
surjective. Let n ∈ T LIM(LUC(A∗)∗). Define ñ ∈ A∗∗ as follows

ñ( f ) = 〈nL( f ), a0〉 ( f ∈ A∗),

where a0 ∈ A with ‖a0‖ = I(a0) = 1. It is straightforward to see that

ñ(I) = n(I) = 1.

From this and the fact that ‖a0‖ = 1, we get that ‖̃n‖ = 1. Now, for each f ∈ A∗ and
a, b ∈ A we have

〈nL( f ), ab〉 = 〈n, ( f · a) · b〉 = I(b)〈nL( f ), a〉.
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Therefore,
〈nL( f ), ab〉 = 0

for all f ∈ A∗, a ∈ A and b ∈ A0. It follows from hypothesis that nL( f ) = 0 onA0 for
all f ∈ A∗. In particular, for each a ∈ A we have aa0 − a0a ∈ A0. Thus,

〈̃n, f · a〉 = 〈nL( f ), aa0〉 = 〈nL( f ), a0a〉 = 〈n, ( f · a0) · a〉 = I(a)〈̃n, f 〉.

This shows that ñ ∈ T LIM(A∗∗). Moreover, for each g ∈ LUC(A∗),

〈̃n, g〉 = 〈n, g · a0〉 = 〈n, g〉;

that is, R(̃n) = n. Hence, R is surjective. �

Remark 2.3. (i) For the case when A has a bounded left approximate identity, Lau
showed thatA is left amenable if and only if there is a left invariant mean on LUC(A∗)
[3, Theorem 6.1(b)]. Moreover, it is clear that in this case we have 〈AA0〉 = A0.
Therefore, Theorem 2.2 is a generalization of [3, Theorem 6.1(b)].

(ii) Examples of Lau algebras satisfying 〈AA0〉 = A0 are the group algebra L1(G)
and the Fourier algebra A(G) of a locally compact group G. Moreover, the hypergroup
algebra L1(H) and the measure algebra M(H) of a locally compact hypergroup H
with a left Haar measure satisfy this condition. A nice example of Lau algebras
satisfying this condition is the quantum group algebra L1(G). See also [4, 5] for the
caseA = L1(G), where G is a locally compact quantum group.

In the following results, |Y | stands for the cardinality of a set Y .

Corollary 2.4. Let A be a Lau algebra with 〈AA0〉 = A0. Then |T LIM(A∗∗)| =
|T LIM(LUC(A∗)∗)|.

Definition 2.5. Let G be a locally compact group. We denote by b(G) the smallest
cardinality of a neighbourhood basis at the identity e for G.

Let G be a locally compact group. Then the Fourier algebra A(G) is a commutative
Lau algebra and therefore it is left amenable; see [2]. In the following result we use
the following notation UC(Ĝ) := LUC(A(G)).

Corollary 2.6. Let G be a nondiscrete locally comapct group. Then |T LIM(UC(Ĝ))| =
22b(G)

. In particular, G is discrete if and only if there is a unique topologically invariant
mean on UC(Ĝ).

Proof. Let u ∈ A(G)0 = {u ∈ A(G) : u(e) = 0}. Since {e} is a set of synthesis for
A(G), we can suppose that u has compact support. Using the regularity of A(G), we
find v ∈ A(G) such that v|supp(u) = 1; so that u = vu ∈ A(G)A(G)0. The rest of the
proof follows immediately from Corollary 2.4 and from [1]. �
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