

Cardinality of the set of topologically left invariant means on left uniformly continuous functionals

Mehdi Nemati*

Abstract

For a Lau algebra \mathcal{A} with a certain condition we show that the number of topologically left invariant means on \mathcal{A}^* is equal to the number of topologically left invariant means on LUC(\mathcal{A}^*). Using this for a nondiscrete locally comapct group G we prove that the cardinality of the set of topologically invariant means on $UC(\widehat{G})$ is equal to $2^{2^{KG}}$. In particular, G is discrete if and only if there is a unique topologically invariant mean on $UC(\widehat{G})$.

2010 *Mathematics subject classification:* Primary 46H05, 43A07; Secondary 43A30. *Keywords and phrases:* Fourier algebra, Lau algebra, left uniformly continuous functional, topologically left invariant mean.

1. Introduction

In [2] Lau introduced and investigated a nice family of Banach algebras under the name F-algebras; later, F-algebras were termed Lau algebras. In fact, a Banach algebra \mathcal{A} is called a *Lau algebra* if the dual space \mathcal{A}^* of \mathcal{A} is a von Neumann algebra and the identity element, *I* of \mathcal{A}^* is a multiplicative linear functional on \mathcal{A} .

Examples of Lau algebras are the group algebra $L^1(G)$ and the Fourier algebra A(G) of a locally compact group G; see [2]. It also includes the Fourier-Stieltjes algebra B(G) of a topological group G. Moreover, the hypergroup algebra $L^1(H)$ and the measure algebra M(H) of a locally compact hypergroup H with a left Haar measure are Lau algebras. A particular example of Lau algebras is the quantum group algebra $L^1(\mathbb{G})$ of a locally compact quantum group \mathbb{G} .

The main purpose of this paper is to show that for a Lau algebra \mathcal{A} satisfying $\langle \mathcal{A}\mathcal{A}_0 \rangle = \mathcal{A}_0$, the cardinality of the set of topologically left invariant means on \mathcal{A}^* is equal to the cardinality of the set of topologically left invariant means on LUC(\mathcal{A}^*). As an application of this result we show that for a nondiscrete locally comapct group G, $|TLIM(UC(\widehat{G}))| = 2^{2^{b(G)}}$. In particular, we obtain that G is discrete if and only if there is a unique topologically invariant mean on $UC(\widehat{G})$.

^{*} speaker

2

M. NEMATI

2. Topologically left invariant means on $LUC(\mathcal{A}^*)$

Let \mathcal{A} be a Lau algebra. For a linear subspace *X* of the von Neumann algebra \mathcal{A}^* containing *I*, the linear functional $m \in X^*$ is called a mean on *X* if

$$||m|| = m(I) = 1.$$

For each $a \in \mathcal{A}$, and $f \in \mathcal{A}^*$, define the element $f \cdot a$ in \mathcal{A}^* by

$$(f \cdot a)(b) = f(ab),$$

for all $b \in \mathcal{A}$. A linear subspace *X* of \mathcal{A}^* is called topologically left invariant if $X \cdot a \subseteq X$ for all $a \in \mathcal{A}$. In this case *X* is called topologically left introverted if for each $f \in X$ and $n \in \mathcal{A}^{**}$ we have $n \cdot f \in X$, where $n \cdot f$ is defined by

$$(n \cdot f)(a) = n(f \cdot a)$$

for all $a \in \mathcal{A}$. Examples of left introverted subspace of \mathcal{A}^* containing *I* are \mathcal{A}^* and the space $LUC(\mathcal{A}^*)$ which is the closed linear span in \mathcal{A}^* of $\mathcal{A}^* \cdot \mathcal{A}$. The elements of $LUC(\mathcal{A}^*)$ is called *left uniformly continuous functional*.

Definition 2.1. Let \mathcal{A} be a Lau algebra and let X be a topologically left invariant subspace of \mathcal{A}^* containing I. Then $m \in X^*$ is called a *topologically left invariant mean* (TLIM) on X if ||m|| = m(I) = 1 and $\langle m, f \cdot a \rangle = I(a) \langle m, f \rangle$ for all $f \in X$ and $a \in \mathcal{A}$. We denote the set of all topologically left invariant means on X by $TLIM(X^*)$.

Recall that, \mathcal{A} is called *left amenable* if there is a topologically left invariant mean on \mathcal{A}^* . Before giving the main result, let us recall that for each $m \in LUC(\mathcal{A}^*)^*$, we can define a bounded linear map $m_L : \mathcal{A}^* \to \mathcal{A}^*$ as follows

$$m_L(f) = m \cdot f \quad (f \in \mathcal{A}^*).$$

For a Lau algebra \mathcal{A} we denote by \mathcal{A}_0 the closed ideal $\{a \in \mathcal{A} : I(a) = 0\}$ and denote by $\langle \mathcal{A} \mathcal{A}_0 \rangle$ the closed linear span of $\mathcal{A} \mathcal{A}_0$ in \mathcal{A}_0 .

Theorem 2.2. Let \mathcal{A} be a Lau algebra with $\langle \mathcal{A}\mathcal{A}_0 \rangle = \mathcal{A}_0$. Then the restriction map $\mathcal{R} : TLIM(\mathcal{A}^{**}) \to TLIM(LUC(\mathcal{A}^*)^*)$ is a bijection.

Proof. It is easy to see that \mathcal{R} is well-defined and injective. We need to prove that \mathcal{R} is surjective. Let $n \in TLIM(LUC(\mathcal{A}^*)^*)$. Define $\tilde{n} \in \mathcal{A}^{**}$ as follows

$$\widetilde{n}(f) = \langle n_L(f), a_0 \rangle \quad (f \in \mathcal{A}^*),$$

where $a_0 \in \mathcal{A}$ with $||a_0|| = I(a_0) = 1$. It is straightforward to see that

$$\widetilde{n}(I) = n(I) = 1.$$

From this and the fact that $||a_0|| = 1$, we get that $||\tilde{n}|| = 1$. Now, for each $f \in \mathcal{A}^*$ and $a, b \in \mathcal{A}$ we have

$$\langle n_L(f), ab \rangle = \langle n, (f \cdot a) \cdot b \rangle = I(b) \langle n_L(f), a \rangle.$$

Cardinality of the set of topologically left invariant means

Therefore,

$$\langle n_L(f), ab \rangle = 0$$

for all $f \in \mathcal{A}^*$, $a \in \mathcal{A}$ and $b \in \mathcal{A}_0$. It follows from hypothesis that $n_L(f) = 0$ on \mathcal{A}_0 for all $f \in \mathcal{A}^*$. In particular, for each $a \in \mathcal{A}$ we have $aa_0 - a_0a \in \mathcal{A}_0$. Thus,

$$\langle \widetilde{n}, f \cdot a \rangle = \langle n_L(f), aa_0 \rangle = \langle n_L(f), a_0 a \rangle = \langle n, (f \cdot a_0) \cdot a \rangle = I(a) \langle \widetilde{n}, f \rangle.$$

This shows that $\tilde{n} \in TLIM(\mathcal{A}^{**})$. Moreover, for each $g \in LUC(\mathcal{A}^{*})$,

$$\langle \widetilde{n}, g \rangle = \langle n, g \cdot a_0 \rangle = \langle n, g \rangle;$$

that is, $\mathcal{R}(\tilde{n}) = n$. Hence, \mathcal{R} is surjective.

Remark 2.3. (i) For the case when \mathcal{A} has a bounded left approximate identity, Lau showed that \mathcal{A} is left amenable if and only if there is a left invariant mean on LUC(\mathcal{A}^*) [3, Theorem 6.1(b)]. Moreover, it is clear that in this case we have $\langle \mathcal{A} \mathcal{A}_0 \rangle = \mathcal{A}_0$. Therefore, Theorem 2.2 is a generalization of [3, Theorem 6.1(b)].

(ii) Examples of Lau algebras satisfying $\langle \mathcal{A}\mathcal{A}_0 \rangle = \mathcal{A}_0$ are the group algebra $L^1(G)$ and the Fourier algebra A(G) of a locally compact group G. Moreover, the hypergroup algebra $L^1(H)$ and the measure algebra M(H) of a locally compact hypergroup H with a left Haar measure satisfy this condition. A nice example of Lau algebras satisfying this condition is the quantum group algebra $L^1(\mathbb{G})$. See also [4, 5] for the case $\mathcal{A} = L^1(\mathbb{G})$, where \mathbb{G} is a locally compact quantum group.

In the following results, |Y| stands for the cardinality of a set Y.

Corollary 2.4. Let \mathcal{A} be a Lau algebra with $\langle \mathcal{A}\mathcal{A}_0 \rangle = \mathcal{A}_0$. Then $|TLIM(\mathcal{A}^{**})| = |TLIM(LUC(\mathcal{A}^*)^*)|$.

Definition 2.5. Let G be a locally compact group. We denote by b(G) the smallest cardinality of a neighbourhood basis at the identity e for G.

Let *G* be a locally compact group. Then the Fourier algebra A(G) is a commutative Lau algebra and therefore it is left amenable; see [2]. In the following result we use the following notation $UC(\widehat{G}) := LUC(A(G))$.

Corollary 2.6. Let G be a nondiscrete locally comapct group. Then $|TLIM(UC(\widehat{G}))| = 2^{2^{b(G)}}$. In particular, G is discrete if and only if there is a unique topologically invariant mean on $UC(\widehat{G})$.

Proof. Let $u \in A(G)_0 = \{u \in A(G) : u(e) = 0\}$. Since $\{e\}$ is a set of synthesis for A(G), we can suppose that u has compact support. Using the regularity of A(G), we find $v \in A(G)$ such that $v|_{supp(u)} = 1$; so that $u = vu \in A(G)A(G)_0$. The rest of the proof follows immediately from Corollary 2.4 and from [1].

4

M. Nemati

References

- [1] Z. Hu, On the set of topologically invariant means on the von Neumann algebra VN(G), Illinois J. Math. **39** (1995), 463-490.
- [2] A. T.-M. LAU, Analysis on a class of Banach algebras with application to harmonic analysis on locally compact groups and semigroups, *Fund. Math.* 118 (1983) 161-175.
- [3] A. T.-M. LAU, Uniformly continuous functionals on Banach algebras, *Colloq. Math.* LI (1987), 195-205.
- [4] M. NEMATI, Invariant φ -means on left introverted subspaces with application to locally compact quantum groups, *Arch. Math. (Basel)*, **106** (2016), 543-552.
- [5] M. NEMATI, Completions of quantum group algebras in certain norms and operators which commute with module actions, *J. Operator Theory*, (2017), to appear.

Mehdi Nemati,

Department of Mathematical Sciences Isfahan University of Technology Isfahan 84156-83111, Iran e-mail: m.nemati@cc.iut.ac.ir

www.SID.ir