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Abstract

Currently, thresholding and compressed sensing in combination with both wavelet and shearlet transforms
have been very successful in inpaiting tasks. However, numerical results demonstrate that shearlets
outperform wavelets in the problem of image inpainting. In this paper we set up a particular model
by inspired seismic data and a box mask to model missing data. The challenge is to fill in the box that is
attended in corrupted images.
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1. Introduction

Reconstructing missing data is a popular challenge in both the analog and digital area.
Also known as inpainting, this activity is the process of filling in the missing region or
techniques for making undetectable modifications to images, modifying the corrupted
ones which are not familiar with the original images. Applications of inpainting range
from restoring of missing blocks in video data to removal of occlusions such as text
from images and repairing of scratched photos. Due to the vast interest in this topic,
there exist several excellent reports on inpainting via compressed sensing which is a
fundamental method to recover sparsified data by `1 minimization [3]. The work done
in those reports focused on analyzing the concept of clustered sparsity which leads to
theoretical bounds and results. Currently, the directional representation systems such
as shearlets have been shown to outperform not only wavelets, but also most other
directional systems [4]. In addition, superiority of shearlets over wavelets for a basic
thresholding algorithm can be found in [3].
In [3], Kutyniok introduced the more flexible universal shearlet systems, which are
associated with an arbitrary scaling sequence. We investigate The performance for
inpainting of this novel construction shearlet systems.
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2. Abstract Inpainting Framework

We start by analyzing the abstract Hilbert space, which is considered later on. Let
x0 be a signal in separable Hilbert Space H . We assume that H can be decomposed
into a direct sum of two closed subspaces, namely, a subspaceHM which is associated
with the missing part of x0 and a subspace HK which is related to the known part
of the signal. Hence, H = HK ⊕ HM = PKH ⊕ PMH ,where PM and PK denote
the orthogonal projections onto those subspaces, respectively. Note that, we will try
to find the missing part PM x0, so the problem of data recovery can be formulated as
follows: Given a corrupt signal PK x0, recover the missing part PM x0. Depending on
the dimension of the given model, we considerH = L2(RD), D ∈ N. If the measurable
subset M ⊆ RD is the missing area of the image, we may set HM = L2(M). Now, we
present the methods for recovering a signal which will be useful in the sequel. In fact,
one of the fundamental methodologies for spare recovery is `1 minimization, which
recovers the original signal by the following recovery algorithm 1 [3]:

Algorithm 1 Inpainting via `1 Minimization
Input:
Incomplete signal PK x0 ∈ HK .
Parseval frame Φ = (φi)i∈I . Compute:
(`1-INP) x? = argminx∈H‖TΦx‖`1(I) subject to PK x0 = PK x
where TΦ is analysis operator respect Φ (TΦ : H → `2(I), x→ (〈x, φi〉)i∈I).
Output:
recovered signal x? ∈ H .

Since all Parseval frames are not basis, there are many solutions such c which
x = T?

Φ
c, only the specific solution TΦx produces the desired numerical stabilities.

Further, the assumption sparsity signal x0 by Φ provides a good recovery which is
expected to occur.
Now, in order to analyze the optimization problem by inpainting algorithm, we need
to introduce two important notions, δ-clustered sparsity and cluster coherence. These
notions were applied to study the geometric separation problem and sparsity [1].

Definition 2.1. [3]. Fix δ > 0. A signal x ∈ H is called δ-clustered sparse in a
Parseval frame Φ (with respect to Λ ⊆ I) if

‖1Λc TΦx‖`1 ≤ δ. (1)

In this case, Λ is said to be δ-cluster for x in Φ.

The δ-clustered sparsity elucidates that coefficients outside of Λ are small. In fact,
the cluster sparsity depends on the chosen set of indices Λ, enlarging Λ leads to smaller
δ in (1).
Cluster coherence introduced in [3] to investigate the missing part of signal x0 onHM

looks as follows:
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Definition 2.2. [3]. Let Λ ⊆ I. The cluster coherence µc(Λ, PMΦ) of Parseval frame
Φ with respect to HM and Λ is defined by µc(Λ, PMΦ) = max j∈J

∑
i∈Λ |〈PMφi, PMφ j〉|,

where PMΦ = (PMφi)i∈I .

In order to clarify the significance of universal shearlet systems, let us recall the
main idea of classical shearlet systems . For generator ψ ∈ L2(R2), a system of shearlet
is defined by {ψ j,l,k = 2

3 j
2 ψ(S lA j[.] − k) : j ∈ Z, l ∈ Z, k ∈ Z2}, where

A =

(
22 0
0 2

)
, S =

(
1 1
0 1

)
denote the parabolic scaling matrix and shearing matrix, respectively. This approach
is enhanced by cone-adapted shearlet systems. The universal shearlet systems were

introduced with associated scaling matrix A j
α j =

(
22 0
0 2α j

)
, where (α j) j ⊆ (−∞, 2)

to produce more flexibility in each scale. A sequence (α j) j∈N0 ⊆ R is called a scaling

sequence if α j ∈ A j = {
m
j
|m ∈ Z,m ≤ 2 j − 1} = {. . . ,

−2
j
,
−1

j
, 0,

1
j
,

2
j
, . . . , 2 −

1
j
}, for

j ≥ 1 and α0 = 0.

Definition 2.3. Let (α j) j∈N0 be a scaling sequence. Then universal-scaling shearlet
system or universal shearlet system is defined by

SH(φ, v, (α j) j) = SHLow(φ) ∪ SHInt(φ, v, (α j) j) ∪ SHBound(φ, v, (α j) j).

The next Theorem shows that universal shearlet systems are a frame for L2(R2).

Theorem 2.4. With notations as above, the universal shearlet system is a Parseval
frame for L2(R2).

3. Inpainting with specific Image model on L2(R2)

The general approach in this section is the same as in the previous one. We
investigate the inpainting results of `1 minimization by chosen proper index set Λ j
and estimate the relative sparsity and cluster coherence respect to this set.

At the first, we would like to analyze a specific mathematical model which is the
model of corrupted line segments. Let w ∈ C∞(R2) be a function that is supported in
[−ρ, ρ] × [−η, η] where ρ, η > 0. A whole sequence of models (w j) j≥0 is given by

w j(x) = w ∗ F j(x) = 〈w, F j(x − [·])〉, x ∈ R2,

where filters F j are defined by the inverse Fourier transform of the corona functions in
[3].

Now, we define the mask of a missing part of image as follows. The maskMh is
the intersection of a small vertical strip around the x2-axis and a small horizontal strip
around the x1-axis which is given byMh = {(x1, x2) ∈ R2 : |x1| ≤ hx1 , |x2| ≤ hx2}. For
fix some ε > 0, we define the clusters

Λ j = {( j, l, k, α j, d) : |l| < 1, |k2| < 2ε j, k ∈ Z2, d = 1, 2}, j ≥ 0.
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Figure 1. Sketch of the corrupted modeling image.

We may determine the relative sparsity of the shearlet coefficient with respect to the
cluster Λ±1

j . Now, we can present the error estimate of Theorem to show the success
of image inpainting with special image model. Inpainting result for shearlets and
wavelets in special cases can be found in [3].

Theorem 3.1. Let (α j) j be a scaling sequence and Ψ = SH(φ, υ, (α j) j) be a universal
shearlet system. If lim inf j→∞ α j > 0 and for a fixed ε > 0, h j = (hx1

j × hx2
j ) j ∈

o(2−(2+α j+ε) j). Then

(
‖w∗j − w j‖1,Ψ

‖w j‖1,Ψ
) j ∈ o(2−N j), as j→ ∞

for every N ∈ N0, where the recover provided by Algorithm 1 is denoted by w∗j .
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