Submitted to the 5st Seminar on Harmonic Analysis and Applications Organized by the Iranian Mathematical Society January 18–19, 2017, Ferdowsi University of Mashhad, Iran

Hecke *-Algebras on Hypergroups

SEYYED MOHAMMAD TABATABAIE* and BENTOLHODA SADATHOSEYNI

Abstract

In this paper we initiate and study the Hecke *-algebra for a discrete hypergroup K and its m-subhypergroup H.

2010 *Mathematics subject classification:* Primary 43A62, Secondary 46L55, 43A20. *Keywords and phrases:* locally compact hypergroup, locally compact group, Hecke algebra, Measure algebra.

1. Introduction and Preliminaries

In this work we extend the ideas in [5] and [2] for a hypergroup pair (*K*, *H*) in which *K* is a discrete hypergroup and *H* is an *m*-subhypergroup of *K*, where *m* is a left Haar measure of *K*. This new structure coincides classical Hecke algebra in the group case. We show that a property putting on elements of Ω , called condition (β), is equivalent with the associativity of the convolution product between elements of Ω . Our main references for hypergroups are [1], [3] and [4].

Definition 1.1. Suppose that K is a locally compact Hausdorff space, $(\mu, \nu) \mapsto \mu * \nu$ is a bilinear positive-continuous mapping from $M(K) \times M(K)$ into M(K) (called convolution), and $x \mapsto x^-$ is an involutive homeomorphism on K (called involution) with the following properties:

- (i) M(K) with * is a complex associative algebra;
- (ii) if $x, y \in K$, then $\delta_x * \delta_y$ is a probability measure with compact support;
- (iii) the mapping $(x, y) \mapsto supp(\delta_x * \delta_y)$ from $K \times K$ into C(K) is continuous, where C(K) is the set of all non-empty compact subsets of K equipped with Michael topology;
- (iv) there exists a (necessarily unique) element $e \in K$ (called identity) such that for all $x \in K$, $\delta_x * \delta_e = \delta_e * \delta_x = \delta_x$;
- (v) for all $x, y \in K$, $e \in supp(\delta_x * \delta_y)$ if and only if $x = y^-$;

Then $K \equiv (K, *, \bar{}, e)$ *is called a locally compact hypergroup.*

^{*} speaker

2

S. M. TABATABAIE AND B. H. SADATHOSEYNI

Let f and g be complex-valued Borel measurable functions on K. For each $x, y, z \in K$ we define

$$f_x(y) = f^y(x) = f(x * y) := \int_K f d(\delta_x * \delta_y)$$
 and $f(x * y * z) := f_x(y * z)$.

Throughout this paper, we assume that *K* is a discrete hypergroup with left Haar measure *m*, and *H* is a subhypergroup of *K*. We denote by C(K) the space of all finite supported complex-valued functions on *K*. We denote $H \setminus K := \{H * a : a \in K\}$, $K/H := \{a * H : a \in K\}$, and $H \setminus K/H := \{H * a * H : a \in K\}$. The set of all functions $f \in C(K)$ such that *f* is constant on all left and right cosets of *H* is denoted by CT(H).

2. Main Results

Definition 2.1. Let K be a discrete hypergroup with a Haar measure m, and H be a subhypergroup of K. We say that H satisfies condition (β) if for every $f \in CT(H)$, every set A of representatives of distinct elements of H\K and each $a \in K$, there is a set B of representatives of distinct elements of H\K such that $(\chi_A f)^a dm = \chi_B f^a dm$, *i.e.* for all $g \in C(K)$,

$$\int_{K} g(x)(\chi_A f)(x*a) \, dm(x) = \int_{B} g(x)f(x*a) \, dm(x)$$

Proposition 2.2. Let G be a discrete group and H be a subgroup of G. Then H satisfies in condition (β) .

Definition 2.3. Let K be a discrete hypergroup and H be a subhypergroup of K satisfying the condition (β). The set of all functions $f \in C(K)$ satisfying following properties is denoted by Ω :

- 1. for each $x \in K$, f is constant on H * x;
- 2. for each $x \in K$, f is constant on x * H;
- 3. for each $x, y, z \in K$, $h \in H$ and $\mu, \nu \in M^c_+(K)$, if $x * y \subseteq x * z * h$, then

$$\int_{K} f d(\mu * \delta_{x} * \delta_{y} * \nu) = \int_{K} f d(\mu * \delta_{x} * \delta_{z} * \delta_{h} * \nu);$$

4. for each $x, y, z \in K$, $h \in H$ and $\mu, \nu \in M^c_+(K)$, if $y * x \subseteq h * z * x$, then

$$\int_{K} f d(\mu * \delta_{y} * \delta_{x} * \nu) = \int_{K} f d(\mu * \delta_{h} * \delta_{z} * \delta_{x} * \nu)$$

Definition 2.4. Let K be a discrete hypergroup and m be a left Haar measure of K. A subhypergroup H of K is called m-subhypergroup if $\chi_A dm = \chi_B dm$, where A and B are two arbitrary sets of representatives of distinct elements of $H \setminus K$.

Definition 2.5. Let K be a discrete hypergroup with a left Haar measure m, and H be an m–subhypergroup of K. For each $f, g \in \Omega$ and $x \in K$, we define

$$f * g(x) := \int_A f(x * y^-)g(y) \, dm(y) \qquad and \qquad f^*(x) := \overline{f(x^-)},$$

Hecke *-Algebras on Hypergroups

where in the above integral, A is a set of representatives of distinct elements of $H \setminus K$. In Theorem 2.8 we will show that the above convolution does not depend on the choice of the set A.

Lemma 2.6. Let K be a discrete hypergroup with a left Haar measure m, H be a subhypergroup of K satisfying the condition (β), $f, g \in C(K)$, and $a \in K$. If A is a set of representatives of distinct elements of $H \setminus K$, then there is a set B of representatives of distinct elements of $H \setminus K$, such that

$$[\chi_A (f * g)]^a = [(\chi_B f) * g]^a.$$

Proposition 2.7. Let K be a discrete hypergroup with a left Haar measure m, H be a subhypergroup of K satisfying the condition (β), f, g \in C(K), and a \in K. For every set B of representatives of distinct elements of H\K, there is a set E of representatives of distinct elements of H\K such that

$$\int_{K} h(y)[\chi_{A}(f * g)](y * a) \, dm(y) = \int_{K} (\chi_{E} h^{a^{-}})(y)(f * g)(y) dm(y).$$

Theorem 2.8. Let K be a discrete hypergroup with a left Haar measure m, H be an msubhypergroup of K satisfying the condition (β). Then with convolution and involution introduced in Definition 2.5, the space Ω is an *-algebra.

Corollary 2.9. Let *K* be a discrete hypergroup and *H* be a subhypergroup of *K*. Ω with the convolution and involution introduced in Definition 2.5 is a *–algebra if and only if *H* satisfy in the condition (β).

Definition 2.10. The set Ω with above convolution and involution is denoted by H(K, H) and is called hyper-Hecke *-algebra.

Remark 2.11. *Note that in the case that G is a discrete group,* Γ *is a subgroup of G,* $K := \Gamma \setminus G / \Gamma$ *, doubel cosets of* Γ *in G, and* $H := \{\Gamma \in \Gamma\}$ *, the trivial subhypergroup of K, then* H(K, H) *is the classical* **-Hecke algebra.*

Theorem 2.12. If K is a discrete hypergroup and H is a subhypergroup of K, then H satisfies the condition (β) if and only if K is a group. In the other words, the space Ω related to (K, H) is an *–algebra if and only if K is a group.

References

- W. R. BLOOM AND H. HEYER, Harmonic Analysis of Probability Measures on Hypergroups, De Gruyter, Berlin, 1995.
- [2] J.-B. BOST AND A. CONNES, Hecke algebras, type III factors and phase transitions with spontaneous symmetry breaking in number theory, *Selecta Math. (N. S.)*, 1(1995), 411-457.
- [3] S. M. TABATABAIE, The problem of density on $L^2(G)$, Acta Math. Hungarica, **150** (2016), 339-345.
- [4] S. M. TABATABAIE, The problem of density on commutative strong hypergroup, *to appear in Math. Reports*
- [5] K. TZANEV, Hecke C*-algebras and amenability, J. Operator Theory, 50(2003), 169-178.

Archive of SID

4

S. M. TABATABAIE AND B. H. SADATHOSEYNI

SEYYED MOHAMMAD TABATABAIE, Department of Mathematics, University of Qom, Qom, Iran e-mail: sm.tabatabaie@qom.ac.ir

BENTOLHODA SADATHOSEYNI, Department of Mathematics, University of Qom, Qom, Iran e-mail: sb.sadathosseini@stu.qom.ac.ir