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Sampling and Reproducing Kernel Hilbert Space
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Abstract

Reproducing kernel Hilbert spaces arise in a number of areas, including approximation theorys statistics,
machine learning theory, group representation theory and various areas of complex analysis. In this
talk the reproducing kernel Hilbert spaces are introduced and their general properties are investigated.
For better understanding of these spaces some examples are given. Moreover, in this space, a sampling
formula is introduced, which is an extension of a famous formula known as the Paley-Wiener (PW) of
band-limited signals. In particular, a single channel sampling formula is discussed.
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1. Introduction

The theory of Hilbert spaces of entire functions was first introduced by L. de Branges
in the series of papers. These spaces, which are now called de Branges spaces,
generalize the classical Paley-Wiener space which consists of the entire functions of
exponential type which are square integrable on the real line. Recently, Ortega Cerd‘a
and K. Seip provided a description of the exponential frames for the Paley-Wiener
space, and a related study of sampling and interpolation, by connecting the problem to
the de Branges spaces theory of entire functions.
Let f be a band-limited signal with band region [−π, π], that is, a square integrable
function on R of which the Fourier transform f̂ vanishes outside [−π, π].Then f can

be recovered by its uniformly spaced discrete values as f (t) =
∑∞
−∞ f (n)

sinπ(t − n)
π(t − n)

,

which converges absolutely and uniformly over R. This series is called the cardinal
series or the Whittaker-Shannon-Kotelnikov (WSK) sampling series. This formula
tells us that once we know the values of a band-limited signal f at certain discrete
points, we can recover f completely. In1941, Hardy [2] recognized that this cardinal
series is actually an orthogonal expansion. WSK sampling series was generalized by
Kramer [4] in 1957 as follows: Let k(ξ, t) be a kernel on I × X , where I is a bounded
interval and X is a subset of R. Assume that k(., t) ∈ L2(I) for each t in X and there
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are points {tn}n∈Z in X such that k(ξ, tn) is an orthonormal basis of L2(I). Then any
f (t) =

∫
I F(ξ)k(ξ, t)dξ with F(ξ) ∈ L2(I) can be expressed as a sampling series.

f (t) =
∑

n

f (tn)
∫

I
k(ξ, t)k(ξ, tn)dξ,

which converges absolutely and uniformly over the subset D on which ∥k(., t)∥L2(I) is
bounded. While WSK sampling series treats sample values taken at uniformly spaced
points, Kramers series may take sample values at nonuniformly spaced points.
Recently, A. G. Garcia and A. Portal [1] extended the WSK and Kramer sampling
formulas further to a more general setting using a suitable abstract Hilbert space valued
kernel. On the other hand, Papoulis introduced a multi-channel sampling formula for
band-limited signals, in which a signal is recovered from discrete sample values of
several transformed versions of the signal.

2. Preliminaries and notations

We will consider Hilbert spaces over either the field of real numbers, R, or of
complex numbers, C. We will use F to denote either R or C, so that when we wish to
state a definition or result that is true for either the real or complex numbers, we will
use F. Given a set X, if we equip the set of all functions from X to F, F (X,F) with
the usual operations of addition, ( f + g)(x) = f (x) + g(x), and scalar multiplication,
(λ. f )(x) = λ.( f (x)), then F (X,F) is a vector space over F.

Definition 2.1. Given a set X, we will say thatH is a reproducing kernel Hilbert space
(RKHS) on X over F, provided that:
(i) H is a vector subspace of F (X,F),
(ii) H is endowed with an inner product, <, >, making it into a Hilbert space,
(iii) for every y ∈ X, the linear evaluation functional, Ey : H −→ F, defined by

Ey( f ) = f (y), is bounded

If H is a RKHS on X, then since every bounded linear functional is given by the
inner product with a unique vector in H , we have that for every y ∈ X, there exists a
unique vector, ky ∈ H , such that for every f ∈ H , f (y) =< f , ky >.

Definition 2.2. The function ky is called the reproducing kernel for the point y. The
2-variable function dened by K(x, y) = ky(x) is called the reproducing kernel for H .
Note that we have, K(x, y) = ky(x) =< ky, kx > and ∥Ey∥2 = ∥ky∥2 =< ky, ky >= K(y, y).

We now look at a few key examples
The Hardy Space of the Unit Disk H2(D):

H2(D) = { f (z) =
∑∞

n=0 anzn : {an} ∈ ℓ2(N ∪ {0}), z ∈ D}, with the inner product,

< f , g >H2(D)=
∑∞

n=0 anbn, and the reproducing kernel K(z,w) =
1

1 − wz
. This function

is called the Szego kernel on the disk.
Sobolev Spaces on [0,1]:
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H = { f : [0, 1] −→ R, f ′ ∈ L2[0, 1], f (0) = f (1) = 0, f is absolutely continuous}.
with the inner product, < f , g >=

∫ 1
0 f ′(t)g′(t)dt, and the reproducing kernel

k(x, y) = ky(x) =

(1 − y)x, x ≤ y
(1 − x)y, x ≥ y

.

3. Main results

Let X be any set and letH be a RKHS on X with kernel K. In this section, we will
show that K completely determines the space H and characterize the functions that
are the kernel functions of some RKHS.

Proposition 3.1. Let H be a RKHS on the set X with kernel K . Then the linear span
of the functions, ky(.) = K(., y) is dense inH .

Lemma 3.2. Let H be a RKHS on X and let { fn} ⊆ H . If limn ∥ fn − f ∥ = 0, then
f (x) = limn fn(x) for every x ∈ X.

Proposition 3.3. Let Hi, i = 1, 2 be RKHSs on X with kernels, Ki(x, y), i = 1, 2. If
K1(x, y) = K2(x, y) for all x, y ∈ X, then H1 = H2 and ∥ f ∥1 = ∥ f ∥2 for every f .

Theorem 3.4. LetH be a RKHS on X with reproducing kernel, K(x, y). If {es : s ∈ S }
is an orthonormal basis for H , then K(x, y) =

∑
s∈S es(y)es(x) where this series

converges pointwise.

Theorem 3.5. LetH be a RKHS on X with reproducing kernel K(x, y). Then { fs : s ∈
S } ⊆ H is a Parseval frame for H if and only if K(x, y) =

∑
s∈S fs(x) fs(y), where the

series converges pointwise.

LetH be a separable Hilbert space and k : X −→ H be an H-valued function on a
subset X of the real line R. Define a linear operator T onH by

T (x)(t) = fx(t) :=< x; k(t) >H ; t ∈ X

We call k(t) the kernel of the linear operator T .

Lemma 3.6. (a) T is one-to-one if and only if {k(t)|t ∈ X} is total inH .
Assume {k(t)|t ∈ X} is total inH so that T : H −→ T (H) is a bijection. Then

(b) < T (x),T (y) >T (H):=< x, y >H defines an inner product on T (H), with which
T (H) is a Hilbert space and T : H −→ T (H) is unitary. Moreover, T (H)
becomes an RKHS with the reproducing kernel k(s, t) :=< k(t), k(s) >H .

Theorem 3.7. If ker T ⊆ ker T̃ and there exists a sequence {tn}∞n=1 in X such that{k̃(tn)}n
is a basis ofH , then T is one-to-one so that T (H) becomes an RKHS under the inner
product < x, y >H=< T (x),T (y) >T (H). Moreover, there is a basis {S n}∞n=1 of T (H)
with which we have the sampling expansion, fx(t) =

∑∞
n=1 f̃x(tn)S n(t), ( fx(.) ∈ T (H))

which converges not only in T (H) but also uniformly over any subset on which ∥k(t)∥
is bounded.
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Theorem 3.8. (Asymmetric nonuniform multi-channel sampling formula)
If ker T ⊆ ∩N

i=1 ker Ti and there exist points {ti,n, 1 ≤ i ≤ N, n ∈ Z} ⊂ X and
constants {α j

i,n, 1 ≤ i ≤ N, 1 ≤ j ≤ M, n ∈ Z} for some integer M ⩾ 1 such that
{∑N

i,n α
j
i,nki(ti,n) : 1 ≤ j ≤ M, n ∈ Z} is an unconditional basis of H , then there is a

basis{S j,n(t) : 1 ≤ j ≤ M, n ∈ Z} of T (H) such that for any fx(t) = T (x)(t) ∈ T (H),

fx(t) =
∑
n∈Z

m∑
j=1

{α j
1,n f 1

x (t1,n) + α j
2,n f 2

x (t2,n) + . . . + α j
N,n f N

x (tN,n)}S j,n(t) (1)

which converges in T (H). Moreover, the series (1) converges absolutely and uniformly
on any subset of X over which ∥k(t)∥H is bounded.

4. Examples

(Sampling with Hilbert transform):Take k̃(t)(ξ) = i sgn(ξ)(k(t))(ξ) so that
T̃ ( f )(t) = f̃x(t) is the Hilbert transform of f (t) in PWπ . Choosing {tn}n∈Z = {n}n∈Z,
{xn}n∈Z = {i sgnξ e−inξ

√
2π
}n∈Z is an orthonormal basis of L2[−π, π] so that {x∗n}n∈Z = {xn}n∈Z

We then have

S n(t) = T (x∗n)(t) =
1
√

2π

∫ π
−π

i sgn(ξ)
e−inξ

√
2π

eitξdξ = −sinc
1
2

(t − n)sin
π

2
(t − n)

where sinct := sinπt
πt , Hence, we have

fx(t) = −
∑
n∈Z

f̃ (n)sinc
1
2

(t − n)sin
π

2
(t − n), ( f ∈ PWπ)

Using the operational relation f̃ (t) = − f (t) and the fact that if f ∈ PWπ, then so does
f̃ ∈ PWπ, we also have f̃ (t) =

∑
n∈Z f (n)sinc 1

2 (t − n)sin π2 (t − n), ( f ∈ PWπ)
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