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The condition of uniqueness dual for frames and K-frames

N. Salahzehi∗

Abstract

Frames in Hilbert spaces are a redundant of vectores which yield a representation for each vector in the
space. K-frames were recently introduced by Găvruţa in Hilbert spaces. They respect to a bounded linear
operator K. In this paper, we will present some conditions of uniqueness dual frame and dual K-frame in
cases.
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1. Introduction

Frames in Hilbert spaces were introduced by J. Duffin and A.C. Schaffer in 1952.
One of the essential applications of frames is that they provide basis-like but generally
nonunique decompositions, dual frames play a key role. Găvruţa recently presented a
generalization of frames with a linear bounded operator K. There are many dual for
frames and K-frames, in case the canonical dual frame. But we can find conditions
that make this existance in a unique way.
First introduce basic definitions as follow:

Definition 1.1. A Riesz basis for H is a family of the form {Uen}∞n=1, where {en}∞n=1 is
an orthonoamal basis for H and U : H → H is a bounded bijective operator.

Definition 1.2. A family of elements { fn}∞n=1 ⊂ H is called a frame of H if there exist
constant A, B > 0 such that

A∥ f ∥2 ≤
∞∑

n=1

|⟨ f , fn⟩|2 ≤ B∥ f ∥2, ∀ f ∈ H.

The constant A, B are called frame bound. The sequence { fn}∞n=1 is said to be Bessel
sequence for H if we only require the right-hand inequality.
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Definition 1.3. A Bessel sequence {gn}∞n=1 in H is called a dual frame for the frame
{ fn}∞n=1 if

f =
∞∑

n=1

⟨ f , gn⟩ fn, ∀ f ∈ H.

Definition 1.4. A sequence { fn}∞n=1 ⊂ H is called a K-frame for H if there exist two
constants 0 < A ≤ B < ∞ such that

A∥K∗ f ∥2 ≤
∞∑

n=1

|⟨ f , fn⟩|2 ≤ B∥ f ∥2, ∀ f ∈ H.

The numbers A, B are called K-frame bounds.

Definition 1.5. Let { fn}∞n=1 be a K-frame for H. We call a Bessel sequence {gn}∞n=1 for
H a dual K-frame of { fn}∞n=1 if

K f =
∞∑

n=1

⟨ f , gn⟩ fn, ∀ f ∈ H.

Definition 1.6. A K-frame { fn}∞n=1 of H is called a K-exact frame if for every m ∈ I ( I
is the countable index set) the sequence { fn}n,m is not a K-frame for H. Also we call
{ fn}∞n=1 a K-minimal frame whenever for each {cn} ∈ l2 such that

∑∞
n=1 cn fn = 0 then

cn = 0 for all n.

2. Main results

We present condition on frames and K-frames to have duals. In bellow offer
theorem and equivalent conditions for existance uniqeness dual for frames and present
relationship between frame and Riesz basis.

Theorem 2.1. Let { fn}∞n=1 be a frame for H. Then the following are equivalent:
(1) { fn}∞n=1 is a Riesz basis for H.
(2) If

∑∞
n=1 cn fn = 0 for some {cn}∞n=1 ∈ l2(N), then cn = 0, ∀n ∈ N.

Theorem 2.2. If { fn}∞n=1 is a Riesz basis for H, then { fn}∞n=1 is a Bessel sequence.
Furthermore, there exists a unique sequence {gn}∞n=1 in H such that

f =
∞∑

n=1

⟨ f , gn⟩ fn, ∀ f ∈ H.

The sequence {gn}∞n=1 is also a Riesz basis, and the series converges unconditionally
for all f ∈ H.

Proposition 2.3. Let { fn}∞n=1 be a frame for Hilbert space H. Then the following are
equevalent:
(1) { fn}∞n=1 is a Riesz basis for H.
(2) { fn}∞n=1 is an exact frame, i.e. It ceases to be a frame when an orbitrary element is
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removed.
(3) { fn}∞n=1 is minimal, i.e. fn < span{nm : m , n} for all n.
(4) If

∑∞
n=1 cn fn = 0 for some {cn} ∈ l2, then cn = 0 for all n.

(5){ fn}∞n=1 is a basis.

Remark 2.4. A frame that is not a Riesz basis is said to be overcomplete; in fact, if
{ fn}∞n=1 is a frame that is not a Riesz basis, there exist coefficient {cn}∞n=1 ∈ l2(N) \ {0}
for which

∞∑
n=1

cn fn = 0.

That is, for such frames there is some dependancy between the frame elements.

With some attention on which said above about frame and Riesz basis, we can
present this corollary:

Corollary 2.5. Let a frame { fn}∞n=1 be a Riesz basis, there is a unique Bessel sequence
{gn}∞n=1 that be unique dual frame for { fn}∞n=1. Then ∀ f ∈ H

f =
∞∑

n=1

⟨ f , gn⟩ fn.

In K-frames the unique dual exists in the condition, that present bellow:

Lemma 2.6. Every K-exact frame is a K-minimal frame, the convers does not hold in
general.

With the following example, we can show that the convers is not hold.

Example 2.7. Let H = C3 and {en}∞n=1 is the orthogonal basis of H. Define K : H → H
by

K
∞∑

n=1

cnen = c1e1 + c2e1 + c3e2.

Then K ∈ B(H) and { fn}∞n=1 is a K-minimal frame. Easily, we can see that {e1, e2} is
also a K-frame with bounds A = 1

8 and B = 1.

The Riesz basis are in particular frames. Different from frames, each Riesz basis
has a unique dual which is the canonical dual. Theorem 2.8 shows that the K-minimal
frames also have such property.

Theorem 2.8. A K-frame { fn}∞n=1 has a unique K-dual if and only if it is a K-minimal
frame.
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