

UEB-Topology on the Norm-Strict Bidual of Banach Algebras

A. JABBARI*

Abstract

For a Banach algebra *A* the strict topology β on *A* is defined as the locally convex topology on *A* induced by the family of seminorms $\{\lambda_a, a \in A\}$, where $\lambda_a(b) = ||ab||$, for all $b \in A$. By the norm-strict bidual of *A* we mean the norm dual of the space $(A, \beta)^*$. In this paper, among other things, we investigate the continuity properties of the product on $((A, \beta)^*, || \cdot ||)^*$, for some special Banach algebras. In particular, generalizing some results of M. Neufang, we show that if *B* is a norm bounded subset of $\langle A^*A \rangle$, and if $m_0 \in RM(A)$, the right multiplier algebra of *A*, and $n_0 \in B$, then the mapping $(m, n) \to m \cdot n$ from $\langle A^*A \rangle \times B$ into $\langle A^*A \rangle$ is jointly continuous at (m_0, n_0) in the UEB- topology, that is the topology of uniform convergence on equicontinuous bounded subsets of $\langle A^*A \rangle$.

2010 Mathematics subject classification: Primary 43A10, Secondary 43A22.

Keywords and phrases: Equicontinuous set, strict topology, bounded approximate identity, norm-strict bidual, UEB-topology.

1. Introduction

For a Banach algebra A the (right) strict topology β on A is defined as the locally convex topology on A induced by the family of seminorms { $\lambda_a, a \in A$ }, where $\lambda_a(b) = ||ab||$, for all $b \in A$. The strict topology β on A is Hausdorff if and only if A is right faithful, i.e. { $a \in A, ba = 0$ forall $b \in A$ } = 0. For example, any Banach algebra with a left approximate identity is right faithful. It is known that if A is right faithful, then the dual $(A, \beta)^*$ of A with respect to the strict topology β is the subspace $< A^*A >$, (i.e. the closed linear span of A^*A in the norm dual A^* of A). By Cohen's factorization theorem $< A^*A >= A^*A$ if A has a bounded right approximate identity. Similar results concerning the left strict topology are true.

Let *A* be a right faithful Banach algebra. By the norm-strict bidual of *A* we mean the norm dual of the space $(A, \beta)^* = \langle A^*A \rangle$.

Let A^{**} denote the norm bidual of the Banach algebra A. A^{**} is a Banach algebra with both the first and second Arens products. The first Arens product on A^{**} is defined as follows:

$$< m \cdot n, f > = < m, n \cdot f >, < n \cdot f, a > = < n, f \cdot a > < f \cdot a, b > = < f, ab >$$

^{*} speaker

2

A. JABBARI

for $m, n \in A^{**}$, $f \in A^*$ and $a, b \in A$. Let $q : A^{**} \to A^*A > *$ denote the canonical projection. Then $\langle A^*A \rangle^*$ is a quotient algebra of A^{**} and, if A is right faithful, the mapping q is an injective algebra homomorphism which embeds A into $\langle A^*A \rangle^*$. Since $\langle A^*A \rangle^*$ is a quotient algebra of A^{**} with the first Arens product, therefore $\langle A^*A \rangle^*$ turns to a Banach algebra with this product. The next result (needed in the sequel) is a generalization of Cohen's factorization theorem due to Sentilles and Taylor [2]. A similar result for the "right" case is correct.

Theorem 1.1. (Sentilles-Taylor) Let A be a Banach algebra and let X be an essentisl (i.e. AX = X) left A-module. Assume further that A contains a bounded left approximate identity $\{e_{\alpha}\}$. Let $\mathcal{H} \subset X$ be a bounded set, then $\{e_{\alpha}\}$ is a uniform left approximate identity of \mathcal{H} , that is, $\lim_{\alpha} \sup_{x \in H} ||e_{\alpha}x - x|| = 0$ if and only if there exists $a \in A$ and $\mathcal{F} \subset X$ such that $\mathcal{H} = a\mathcal{F}$.

From [2], a subset \mathcal{H} of $\langle A^*A \rangle$ is an equi- $\langle A^*A \rangle$ set if there exists $a \in A$ such that $|f(x)| \leq ||ax||$ for all $f \in \mathcal{H}$ and $x \in A$. For a Bannach algebra A with a bounded approximate identity, the equi- $\langle A^*A \rangle$ sets are explicitly characterized below. The following theorem is proved by Sentilles and Taylor [2] for general left Banach A-modules X.

Theorem 1.2. (Sentilles-Taylor) Let A be a Banach algebra with a bai $(e_{\alpha})_{\alpha}$. For a subset \mathcal{H} of $(A,\beta)^* = A^*A$, the following statements are equivalent: (i) \mathcal{H} is equi-A^{*}A, (ii) \mathcal{H} is norm bounded and $\lim_{\alpha} \sup_{f \in \mathcal{H}} ||f \cdot e_{\alpha} - f|| = 0$ (iii) There exist $a \in A$ and a subset $\mathcal{F} \subset Ball_1(A^*A)$ such that $\mathcal{H} = \mathcal{F} \cdot a$. (Ball_1(A^{*}A) denotes the unit ball of A^*A .)

Most results of the present paper are generalizations of the results in [1].

2. The UEB-Topology

Let *A* be a Banach algebra with a bounded left approximate identity. Let $\langle A^*A \rangle^*$ denote the norm dual of $\langle A^*A \rangle$, or equivalently the norm-strict bidual of (A,β) . Let *UEB* denote the topology of uniform convergence on equi- $\langle A^*A \rangle$ subsets of $\langle A^*A \rangle$, that is a net $(n_{\alpha})_{\alpha}$ in $\langle A^*A \rangle^*$ converges to 0 if and only if

$$\sup_{f \in \mathcal{H}} | < n_{\alpha}, f > | \to 0$$

for all equi- $\langle A^*A \rangle$ subsets \mathcal{H} of $\langle A^*A \rangle$. Then we have the following theorem.

Theorem 2.1. Let A be a Banach algebra with a bounded approximate identity. Then the UEB-topology on $(A^*A)^*$ coincides with the topology generated by the seminorms $\{\lambda_a, a \in A\}$ where $\lambda_a(n) = ||a \cdot n||$ for all $n \in (A^*A)^*$.

3. Continuity of the product in $(A^*A)^*$ with the *UEB*-topology

Let *A* be a right faithful Banach algebra. In this section, we introduce and study the *UEB*-topological center of the norm-strict bidual $\langle A^*A \rangle^*$ of (A,β) . First notice that if $n \in \langle A^*A \rangle^*$ is an arbitrary element, then the right multiplication by n, $\rho_n :< A^*A \rangle^* \rightarrow \langle A^*A \rangle^*$ defined by $\rho_n(m) = m \cdot n$ is *UEB-UEB* continuous, i.e. if $m_\alpha \rightarrow 0$ in the *UEB*-topology of $\langle A^*A \rangle^*$, then $m_\alpha \cdot n \rightarrow 0$ in the *UEB*-topology, since if \mathcal{F} is equi- $\langle A^*A \rangle$, so is the set $\{n \cdot f, f \in \mathcal{F}\}$. In fact, we have more as the next lemma shows.

Lemma 3.1. Let A be a right faithful Banach algebra, $B \subset A^*A >^* a$ norm bounded set and $\mathcal{F} \subset A^*A > be$ an equi- $A^*A > set$. Then the set $\{n \cdot f, n \in B, f \in \mathcal{F}\}$ is equi- $A^*A >$.

Recall that the right strict topology $\beta = \beta_r$ on a Banach algebra *A* is defined as the locally convex topology on *A* induced by the family of seminorms $\{\lambda_a, a \in A\}$, where $\lambda_a(b) = ||ab||$, for all $b \in A$. Also the left strict topology β_l on *A* is the locally convex topology on *A* induced by the family of seminorms $\{\rho_a, a \in A\}$, where $\rho_a(b) = ||ba||$, for all $b \in A$.

Definition 3.2. Let A be any Banach algebra. We say that A is a SIN Banach algebra if the right strict dual $(A, \beta = \beta_r)^*$ and the left strict dual $(A, \beta_l)^*$ of A coincide.

Recall that *A* is called right (resp. left) faithful if $\{a \in A, ba = 0 \text{ for all } b \in A\} = 0$ (resp. $\{a \in A, ab = 0 \text{ for all } b \in A\} = 0$). *A* is faithful if it is both right and left faithful. For example, any Banach algebra with approximate identity is faithful.

Lemma 3.3. Let A be a Banach algebra. (a) If A is right faithful, then $(A,\beta_r)^* = < A^*A >$. (b) If A is left faithful, then $(A,\beta_l)^* = < AA^* >$. (c) If A is faithful, then $(A,\beta_r)^* = < A^*A >$ and $< AA^* > = (A,\beta_l)^*$. (d) A faithful Banach algebra A is SIN, provided $< A^*A > = < AA^* >$. (e) A Banach algebra A with a bounded approximate identity is SIN, provided $A^*A = AA^*$.

It is evident from definition that a locally compact topological group G is a SIN group if and only its group algebra $L^1(G)$ is a SIN algebra.

Lemma 3.4. Let A be a faithful Banach algebra and $\mathcal{F} \subset A^*A > be$ an equi- $A^*A > set$. Then

(i) The set $Ball_1(A) \cdot \mathcal{F} = \{a \cdot f, f \in \mathcal{F}, a \in A, ||a|| \le 1\}$ is equi- $\langle A^*A \rangle$. (ii) If A is a SIN Banach algebra, then the set $\mathcal{F} \cdot Ball_1(A) = \{f \cdot a, f \in \mathcal{F}, a \in A, ||a|| \le 1\}$ is equi- $\langle A^*A \rangle$.

Definition 3.5. Let A be a right faithful Banach algebra. The UEB-topological center $Z^{UEB}(\langle A^*A \rangle^*)$ of the norm-strict bidual of (A,β) is defined by

 $Z^{UEB}(\langle A^*A \rangle^*) = \{m \in \langle A^*A \rangle^*, \lambda_m : \langle A^*A \rangle^* \rightarrow \langle A^*A \rangle^* \text{ is } UEB-UEB \text{ continuous} \}.$

A. JABBARI

It is easily seen that $A \subset Z^{UEB}(\langle A^*A \rangle^*)$. In fact, for each $a \in A$, $\lambda_a(n)(f) = \langle n, f \cdot a \rangle$, for all $n \in \langle A^*A \rangle^*$ and $f \in \langle A^*A \rangle^*$. So if $n_\alpha \to 0$ (in $\langle A^*A \rangle^*$) with respect to the *UEB*-topology, then for each equi- $\langle A^*A \rangle$ set \mathcal{F} ,

$$\sup_{f \in \mathcal{F}} |\lambda_a(n_\alpha), f > | = \sup_{f \in \mathcal{F}} | < n_\alpha, f \cdot a > | \to 0$$

since the set $\mathcal{F} \cdot a$ is equi- $\langle A^*A \rangle$. Therefore $A \subset Z^{UEB}(\langle A^*A \rangle^*)$. For the case where $A = L^1(G)$ is the group algebra of a locally compact group G, it is proved that the *UEB*-topological center of $LUC(G)^*$, i.e. the norm-strict bidual of $(L^1(G),\beta)$, actually contains the measure algebra M(G).

Proposition 3.6. $RM(A) \subset Z^{UEB}(\langle A^*A \rangle^*)$. In particular, if $A \cdot Z^t(\langle A^*A \rangle^*) \subset A$ or equivalently $Z^t(\langle A^*A \rangle^*) \subset RM(A)$ (by Neufang module maps prop. 2.3), then $Z^t(\langle A^*A \rangle^*) \subset Z^{UEB}(\langle A^*A \rangle^*)$.

The inclusion in the above proposition can be strict. In fact, if *A* is a SIN Banach algebra with $Z^t(\langle A^*A \rangle^*) = RM(A)$ (like the group algebra of a locally compact SIN group *G*) (or *A* has a bounded right approximate identity which is not a right ideal in its second dual A^{**} but $A \cdot Z^t((A^*A)^*) \subset A$,) then

$$Z^{UEB}(\langle A^*A \rangle^*) = \langle A^*A \rangle^* \neq RM(A) = Z^t(\langle A^*A \rangle^*).$$

Now the following theorem is easily verified. This is a generalization of a result of Neufang et. al. [1] when $A = L^{1}(G)$, for a locally compact group G.

Theorem 3.7. Let A be a faithful Banach algebra, let $B \subset (A^*A) > be a norm bounded set, <math>m_0 \in (A^*A) > and n_0 \in B$. Then the mapping $(m, n) \to m \cdot n$ from $(A^*A) \times B$ to $(A^*A) > and n_0 \in B$. Then the mapping $(m, n) \to m \cdot n$ from $(A^*A) \times B$ to $(A^*A) > and n_0 \in B$. Then the mapping $(m, n) \to m \cdot n$ from $(A^*A) \times B$ to $(A^*A) > and n_0 \in B$. Then the mapping $(m, n) \to m \cdot n$ from $(A^*A) \times B$ to $(A^*A) > and n_0 \in B$. Then the mapping $(m, n) \to m \cdot n$ from $(A^*A) \to B$ to $(A^*A) \to and n_0 \in B$. Then the mapping $(m, n) \to m \cdot n$ from $(A^*A) \to B$ to $(A^*A) \to and n_0 \in B$. Then the mapping $(m, n) \to m \cdot n$ from $(A^*A) \to B$ to $(A^*A) \to and n_0 \in B$. Then the mapping $(m, n) \to m \cdot n$ from $(A^*A) \to B$ to $(A^*A) \to and n_0 \in B$. Then the mapping $(m, n) \to m \cdot n$ from $(A^*A) \to B$ to $(A^*A) \to and n_0 \in B$. Then the mapping $(m, n) \to m \cdot n$ from $(A^*A) \to B$ to $(A^*A) \to and n_0 \in B$. Then the mapping $(m, n) \to m \cdot n$ from $(A^*A) \to B$ to $(A^*A) \to and n_0 \in B$. Then the mapping $(m, n) \to m \cdot n$ from $(A^*A) \to B$ to $(A^*A) \to and n_0 \in B$. Then the mapping $(m, n) \to m \cdot n$ from $(A^*A) \to B$.

(a) $m_0 \in Z^{UEB}(\langle A^*A \rangle^*)$ or in particular $m_0 \in RM(A)$, (b)A is a SIN Banach algebra.

References

- M. NEUFANG, J. PACHL AND P. SALMI, Uniform equicontinuity, multiplier topology and continuity of convolution, *Arch. Math.* 104 (2015), 367-376.
- [2] F. D. SENTILLES AND D. C. TAYLOR, Factorization in Banach Algebras and the general strict topology, *Trans. Amer. Math. Soc.* 142 (1969), 141-152.

4