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Abstract
In this paper we investigate wavelet collocation-finite difference method for solving two-dimensional
model of drug release in the cardiovascular tissue from the stent.
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1. Introduction
Arterial diseases are among the leading causes of death in the industrialized world.
They may cause a reduction of the blood flow to important organs and to muscles,
because of the narrowing or occlusion of the affected arteries. Drug release depends
on many factors, such as the geometry and location of the vessel, the geometry of
the stent, the coating properties as its chemical composition and porosity, and drug
characteristics as for example its diffusivity. Due to the involvement of so many
factors, prediction of drug release represents an important issue and mathematical
models are a useful tool to design an appropriate drug delivery system.

The paper is organized as follows. Section 2 is devoted to the description of the
model. In Section 3 we explain wavelet collocation method for solving the two-
dimensional model of drug release from the stent.

2. Description of the model

The drug release system in the arterial wall Ωw can be modeled as follows [4]:
∂a
∂t
+

Klag

kw
uw∇a − Dw△a = 0, in Ωw,

Dw
∂a
∂nw
+ α(t)a = β(t)c0, on Γ,

Dw
∂a
∂nw
+ Pw

a
ϵwkw

= 0, on Γadv,

a = 0, on Γbl ∪ Γs. (1)
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where a are the volume averaged solid concentration of the free drug inside the arterial
wall. Dw denotes the diffusion coefficient of the considered drug in the tissue, Klag

denotes the decrease of convective transport due to collisions of the solid particles
with the structure of the porous wall (0 ≤ Klag ≤ 1), kw is an additional partition
coefficient that defines the ratio between the drug bound to the tissue matrix and that
dissolved in the fluid, Pw is the permeability of the tissue and ϵw is the its porosity.
Finally, uw = − kb

µb
∇p, where kb and µb are the hydraulic permeability of the arterial

wall and the viscosity of the blood plasma respectively and p is the pressure.

Figure 1. Stent S in contact with the vessel wall V.

3. Multiresolution analysis and wavelet collocation method

Let φ be a Daubechies wavelet’s scaling function. Therefore φ is compact support
and

φ(x) =
N−1∑
k=0

akφ(2x − k), (2)

where {ak} are the filter coefficients and N is an even positive integer. Suppose φ(x) is
normalized such that:

∫ ∞
−∞ φ(x) dx = 1. We introduce[1]

θ(x) := (φ ∗ φ(−·))(x), (3)

the function θ is called autocorrelation function of φ.

Theorem 3.1. The function θ, have the following properties[1, 3]:

1. θ(x) =
∑N−1

k=−N+1 ckθ(2x − k), that ck = c−k =
1
2
∑N−1−k

i=0 aiak+i, k ≥ 0,
2. supp (θ) ⊆ [−N + 1,N − 1],
3. θ(k) = δ0,k, k ∈ Z,
4. c2k = δ0,k, ck = θ( k

2 ), k ∈ Z, therefore θ(x) =
∑N−1

k=−N+1 θ(
k
2 )θ(2x − k),

where N is an even positive integer in Daubechies wavelet, the sequence {ck}k∈Z is
called the scaling filter and δ0,k is the Kronecker delta function.

Definition 3.2. A sequence of subspaces {V j} j∈Z in L2(R) is called a Multiresolution
analysis (MRA) for L2(R) with scaling function φ, if[2]:

1. V j ⊆ V j+1 ⊆ L2(R),
2.
∩

j∈Z V j = {0}, and
∪

j∈ZV j = L2(R)
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3. f (·) ∈ V j ⇔ f (2− j·) ∈ V0,

4. f (·) ∈ V0 ⇔ f (· − n) ∈ V0, for all n ∈ Z,
5. There exist a function φ ∈ V0, called scaling function, such that {φ(· − k)}k∈Z is

an orthonormal basis for V0.

Corollary 3.3. Let {V j} j∈Z be MRA for L2(R) with scaling function φ. There exist
coefficients {ak}k∈Z such that

φ(x) =
∑
k∈Z

akφ(2x − k).

and for any j, k ∈ Z define φ jk(x) = 2 j/2φ(2 jx − k). Then {φ jk(x)}k∈Z is an orthonormal
basis for V j [2].

If {V j} j∈Z is a multiresolution anaysis for L2(R) with scaling function ϕ and wavelet
ψ, then {V ′

j = V j ⊗ V j} j∈Z is a multiresolution analysis of L2(R2).
We can easily show that

V
′

1 = V (x)
1 ⊗ V (y)

1 = (V (x)
0 ⊕W (x)

0 ) ⊗ (V (y)
0 ⊕W (y)

0 ) (4)

= (V (x)
0 ⊗ V (y)

0 ) ⊕ (V (x)
0 ⊗W (y)

0 ) ⊕ (W (x)
0 ⊗ V (y)

0 ) ⊕ (W (x)
0 ⊗W (y)

0 )

= V
′

0 ⊕W
′1
0 ⊕W

′2
0 ⊕W

′3
0 .

This 2-D multiresolution analysis requires one scaling function

Φ(x, y) = ϕ(y)ϕ(x) ∈ V
′

0,

and three wavelets

Ψ1(x, y) = ϕ(x)ψ(y), Ψ2(x, y) = ϕ(y)ψ(x), Ψ3(x, y) = ψ(x)ψ(y),

where Ψi is the wavelet associated to W
′i for i = 1, 2, 3, respectively.

Define V j = span{θ(2 j · −k), k}, that j ∈ Z. So {V j} j∈Z generates an MRA with
scaling function θ [2, 3].

The derivatives of the function θ defined by θ(x) =
∫
φ(t)φ(t − x)dt are

θ′(l) = −
∫

φ(t)φ′(t − l)dt, θ′′(l) = −
∫

φ′(t)φ′(t − l)dt.

Thus we compute derivatives of the function θ at the point xl = l2− j.
Let J be arbitrary. We estimate the solution for equation (1) with corresponding

initial and boundray conditions using the following expansion:

a(x, y) ≈
∑
k∈Z

∑
l∈Z

aklθ(2J x − k)θ(2Jy − l), (5)

where akl = a(xJ
k , y

J
l ), xJ

k = k2−J and yJ
l = l2−J . The first derivative of a with respect

to time, are estimated by ∂a
∂t ≃

an+1−an

∆t .
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Thus the discretization of Eq. (1) at given collocation points xJ
p =

p
2J and yJ

q =
q
2J ,

p, q = 1, · · · , 2J − 1, is

an+1(xp, yq) =
Klag

kw

kb

µb
2J∆t

p1

∑
k∈Z

an
kqθ
′(p − k) + p2

∑
l∈Z

an
plθ
′(q − l)


+ Dw22J∆t

∑
k∈Z

an
kqθ
′′(p − k) +

∑
l∈Z

an
plθ
′′(q − l)


+ ∆tS n(xp, yq) + an

pq. (6)

Now, we can write an+1 = Aan + Bn, where the vector Bn is generated by the boundary
conditions.

4. Conclusion

Wavelet collocation-finite difference approximation to the solution of the two-
dimensional model of drug release from the stent is constructed. The equation (1)
with corresponding initial and boundary conditions, can be solved successfully using
the proposed method in this paper. The numerical results will be presented at the
speech.
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