Submitted to the 5st Seminar on Harmonic Analysis and Applications Organized by the Iranian Mathematical Society January 18–19, 2017, Ferdowsi University of Mashhad, Iran

Banach function algebras generated by normed vector spaces and linear functionals

ALI REZA KHODDAMI*

Abstract

Given a non-zero normed vector space A and a contractive non-zero element $\varphi \in A^*$ (the dual space of A), we introduce the Banach function algebra $C^{\varphi}(K)$, where $K = \overline{B_1^{(0)}}$ is the closed unit ball of A. We investigate and characterize some basic properties, such as idempotent elements, nilpotent elements and bounded approximate identities of the Banach function algebra $C^{\varphi}(K)$. Finally we characterize some elements of the character space $\triangle(C^{\varphi}(K))$.

2010 Mathematics subject classification: Primary 46J10 Secondary 46H20, 46B28. Keywords and phrases: Banach function algebra, Normed vector space, Bounded approximate identity, Idempotent element, Character space.

1. Introduction

Let A be a non-zero normed vector space and let φ be a non-zero contractive $(\|\varphi\| \le 1)$ element of A^* . Also let $K = \overline{B_1^{(0)}}$ be the closed unit ball of A. Suppose that $C(K) = \left\{ f: K \longrightarrow \mathbb{C} \mid f \text{ is continuous and bounded} \right\}$. Clearly C(K) is a Banach space with respect to the norm, $\|f\|_{\infty} = \sup \left\{ |f(x)| \mid x \in K \right\}$. For $f,g \in C(K)$ define,

$$(f \cdot g)(x) = f(x)g(x)\varphi(x), \quad x \in K.$$

We shall show that $(C(K), \cdot)$ is a non-unital commutative Banach algebra that we denote it by $C^{\varphi}(K)$. Also we characterize the idempotent, nilpotent elements and the bounded approximate identities of $C^{\varphi}(K)$. Finally we characterize some elements of the character space of $C^{\varphi}(K)$. Many basic properties of $C^{\varphi}(K)$ are investigated in [1].

2. Main results

In this section let A be a non-zero normed vector space and let φ be a non-zero linear functional on A with $||\varphi|| \le 1$. Also let $K = \overline{B_1^{(0)}} \subseteq A$.

^{*} speaker

2

Proposition 2.1. Let A be a non-zero normed vector space and let $\varphi \in A^*$ be a non-zero element such that $||\varphi|| \le 1$. Then $C^{\varphi}(K)$ is a non-unital commutative Banach algebra.

Set
$$A^* \Big|_K = \{f \Big|_K : K \longrightarrow \mathbb{C} \mid f \in A^* \}$$
. So we can present the following result.

Proposition 2.2. Let A be a non-zero normed vector space and let $\varphi \in A^*$ be a non-zero element such that $||\varphi|| \le 1$. Then $A^*\Big|_K \subseteq C^{\varphi}(K)$ and for each $f \in A^*$, $||f|| = ||f||_{\infty}$.

In the following Proposition we characterize the form of idempotent elements of $C^{\varphi}(K)$.

Proposition 2.3. Let A be a non-zero normed vector space and let $\varphi \in A^*$ be a non-zero element such that $||\varphi|| \le 1$. Then $f \in C^{\varphi}(K)$ is idempotent if and only if

$$f(x) = \begin{cases} 0 & x \in f^{-1}(\{0\}) \\ \frac{1}{\varphi(x)} & x \notin f^{-1}(\{0\}) \end{cases}$$

Proposition 2.4. Let A be a non-zero normed vector space and let $\varphi \in A^*$ be a non-zero element such that $||\varphi|| \le 1$. Then $f \in C^{\varphi}(K)$ is nilpotent if and only if $f\Big|_{K=\ker(\varphi)} = 0$.

We give a result concerning bounded approximate identity.

Theorem 2.5. Let A be a non-zero normed vector space and let $\varphi \in A^*$ be a non-zero element such that $||\varphi|| \le 1$. Then there is no bounded approximate identity in $C^{\varphi}(K)$.

For each $k \in K$, define $\hat{k}: C^{\varphi}(K) \longrightarrow \mathbb{C}$ by $\hat{k}(f) = f(k), f \in C^{\varphi}(K)$. Obviously $K \subseteq C^{\varphi}(K)^*$.

Recall that an element $\psi \in C^{\varphi}(K)^*$ is a character if $\psi(f \cdot g) = \psi(f)\psi(g)$, $f, g \in C^{\varphi}(K)$. Let $\triangle(C^{\varphi}(K))$ be the set of all characters on $C^{\varphi}(K)$. One can easily check that $\hat{0} \notin \triangle(C^{\varphi}(K))$. Indeed, As $1 \cdot 1 = \varphi \Big|_{K}$ then $\hat{0}(1 \cdot 1) = \hat{0}(\varphi \Big|_{K}) = \varphi(0) = 0 \neq \hat{0}(1)\hat{0}(1) = 1$.

Proposition 2.6. Let A be a non-zero normed vector space and let $\varphi \in A^*$ be a non-zero element such that $||\varphi|| \le 1$. Then $K \cap \varphi^{-1}(\{1\}) \subseteq \triangle(C^{\varphi}(K))$.

Remark 2.7. Clearly $K \cap \ker(\varphi) \nsubseteq \Delta(C^{\varphi}(K))$. Indeed if $k \in K \cap \ker(\varphi)$ then $0 = \hat{k}(1 \cdot 1) \neq \hat{k}(1)\hat{k}(1) = 1$.

In the sequel we present two questions.

Question 1. Characterize the space $\triangle(C^{\varphi}(K))$.

Question 2. Characterize the Banach function algebra $C^{\varphi}(K)$ in the case where A is finite dimensional.

Acknowledgement

The author would like to thank the referee. Any comments and suggestions are welcome.

Banach function algebras generated by normed vector spaces

References

[1] A. R. Khoddami, On a certain class of Banach function algebras, preprint.

ALI REZA KHODDAMI, Department of Pure Mathematics, P. O. Box 3619995161-316, Shahrood, Iran.

e-mail: khoddami.alireza@shahroodut.ac.ir

3