Submitted to the 5st Seminar on Harmonic Analysis and Applications Organized by the Iranian Mathematical Society January 18–19, 2017, Ferdowsi University of Mashhad, Iran

Certain Subspaces of the Dual of a Banach Algebra

ALI AKBAR KHADEM MABOUDI*

Abstract

The dual of an introverted subspace of the dual of a Banach algebra enjoys two (Arens type) products. In this talk we investigate the topological centers related to these products for a general introverted subspace. Some older results on certain introverted subspaces of $L^{\infty}(G)$ are extended to a general introverted subspace.

2010 Mathematics subject classification: Primary: 46H25.

Keywords and phrases: Arens product; topological center; introverted subspace.

1. Introduction

Following [1], the second dual A^{**} of a Banach algebra A enjoys two, in general, d multiplications (each turning A^{**} into a Banach algebra. In the case where these multiplications are coincide, A is said to be Arens regular.

Let A be a Banach algebra, A^* and A^{**} be the dual and the second dual of A, respectively. We shall make A^* into a Banach A-module under the module operations given by:

$$\langle f \cdot a, b \rangle = \langle f, ab \rangle, \quad \langle a \cdot f, b \rangle = \langle f, ba \rangle.$$

A subspace X of A^* is called left (resp. right) invariant if $A \cdot X \subseteq X$ (resp. $X \cdot A \subseteq X$). A subspace X is called invariant, if it is both left and right invariant.

Let X be an invariant subspace of A^* , $m \in X^*$ and $f \in X$. We define, $m \square f$ and $f \lozenge m$ so that, for every $a \in A \lang m \square f, a \rang = \lang m, f \square a \thickspace a$ and, $\lang a, f \lozenge m \thickspace = \lang a \lozenge f, m \thickspace b$. Then X is called left (resp. right) introverted, if $X^* \square X \subseteq X$ (resp. $X \lozenge X^* \subseteq X$); X is called introverted if it is both left and right introverted.

If X is left (resp. right) introverted, then (X^*, \square) (resp. (X^*, \lozenge)) is a Banach algebra under the product $m\square n$ (resp. $m\lozenge n$), in which, $m\square n$ and $m\lozenge n$ are defined so that, $\langle m\square n, f\rangle = \langle m, n\square f\rangle$, and $\langle f, m\lozenge n\rangle = \langle f\lozenge m, n\rangle$, for all $f\in X$. The products \lozenge and \square are called the first and the second Arens (type) products on X^* , respectively. An introverted subspace X of A^* is called Arens (type) regular if $m\square n = m\lozenge n$ for every $m, n \in X$.

^{*} speaker

2

For a Banach algebra A it is obvious that A^* is introverted. In this case \square and \Diamond are the so-called (first and second) Arens products on A^{**} , which makes A^{**} into a Banach algebras under each of these products. A less trivial example of a left (resp. right) introverted subspace of A^* is $A^*\square A$ (resp. $A\Diamond A^*$), in the case where A enjoys a bounded approximate identity; [2].

If X is left introverted, then one may show that for every $n \in X^*$ the mapping $m \mapsto m \square n$ is $w^* - w^*$ continuous, but $m \mapsto n \square m$ is not continuous in general, unless n is in A. Whence the first topological center $Z_1(X^*)$ of X^* is defined so that,

$$Z_1(X^*) = \{ n \in X^*; m \mapsto n \square m \text{ is } w^* - w^* - \text{continuous} \}.$$

If X right introverted, the second topological center $Z_2(X^*)$ of X^* is defined so that,

$$Z_2(X^*) = \{n \in A^{**}; m \mapsto m \lozenge n \text{ is } w^* - w^* - \text{ continuous}\}.$$

Trivially, $A \subseteq Z_1(X^*) \cap Z_2(X^*)$; and also $Z_1(X^*)$ and $Z_2(^*)$ are closed subalgebras of (X^*, \square) and (X^*, \lozenge) , respectively. We use the notations Z_1 and Z_2 for $Z_1(A^{**})$ and $Z_2(A^{**})$, respectively.

For the group algebra $A = L^1(G)$, in which G is a locally compact topological group, it is known that $Z_1 = Z_2 = L^1(G)$; [4]. Note that in this case $A^* \square A = LUC(G)$ and $A \diamondsuit A^* = RUC(G)$. For $A = K(c_0)$, the operator algebra of all compact linear operators on the sequence space c_0 , it has been shown that $Z_1 \neq Z_2$; [5].

2. The results

We start with the following elementary fact on the introversion proprty of invariant subspaces.

Proposition 2.1. Every w^* -closed invariant subspace of A^* is introverted.

A functional $f \in A^*$ is called weakly almost periodic if $f \square A_1$ is weakly relatively compact in A^* . The set of all weakly compact elements of A^* will denote by wap(A). It is easy to verify that wap(A) is a closed subspace of A^* . The following result describes introversion of X in terms of the inclusion $X \subseteq wap(A)$.

Theorem 2.2. For every norm closed translation invariant subspace X of A^* , the following are equivalent.

- (i) $X \subseteq wap(A)$.
- (ii) X is left introverted and $Z_1(X^*) = X^*$.
- (iii) X is right introverted and $Z_2(X^*) = X^*$.

As an immediate consequence we have the next corollary.

Corollary 2.3. Every norm closed invariant subspace X of wap(A) is introverted, and Arens (type) regular, i.e. $Z_1(X^*) = X^* = Z_2(X^*)$. In particular wap(A) is introverted.

The following result is an extension of [5, Corollay 3.2].

Theorem 2.4. Let A be a Banach algebra and X be a left introverted subspace of A^* then

- (i) $X \diamond Z_1(X^*) \subseteq X$.
- (ii) If $X \square A = X$, then $A \lozenge Z_1(X^*) \subseteq Z_1$.
- (iii) if $X \square A = A$ and A.A = A, then $A \lozenge Z_1(X^*) = A \lozenge Z_1$.

The next result extends [5, Theorem 3.6]) to a general left introverted subspace of A^* .

Theorem 2.5. Let X be a norm closed left introverted subspace of A^* such that $X \square A = X$, and A . A = A. Then the following statements are equivalents.

- $(i)X \subseteq wap(A)$.
- $(ii)A \Diamond X^* \subseteq Z_1.$
- (iii) $A \diamond X^* \subseteq A \diamond Z_1(X^*)$.
- (iv) $Z_1(X^*) = X^*$.

References

- [1] A. Arens, The adjoint of a bilinear operation, Proc. Amer. Math. Soc. 2 (1951), 839–84.
- [2] H.G. Dales, Banach Algebras and Automatic Continuity, London Math. Soc. Monographs 24 (Clarendon Press, Oxford, 2000).
- [3] A.A. Khadem-Maboudi and H.R. Ebrahimi Vishki, *Strong Arens irregularity of bilinear mappings and reflexivity*, Banach J. Math. Anal. 6 (2012), no. 1, 155–160.
- [4] A.T.-M. Lau and V. Losert, On the second conjugate algebra of locally compact group, J. London Math. Soc. 37(1988), 464-470.
- [5] A.T.-M. Lau and A. Ulger, *Topological centers of certain dual algebras*, Trans. Amer. Math. Soc. **348** (1996) no. 3, 1191–1212.

ALI AKBAR KHADEM MABOUDI,

Department of Biostatistics, Faculty of Paramedical sciences, Shahid Beheshti University of Medical sciences, Tehran, Iran

e-mail: amaboudi@sbmu.ac.ir