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Certain Subspaces of the Dual of a Banach Algebra
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Abstract

The dual of an introverted subspace of the dual of a Banach algebra enjoys two (Arens type) products. In
this talk we investigate the topological centers related to these products for a general introverted subspace.
Some older results on certain introverted subspaces of L∞(G) are extended to a general introverted
subspace.
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1. Introduction

Following [1], the second dual A∗∗ of a Banach algebra A enjoys two, in general,
d multiplications ( each turning A∗∗ into a Banach algebra. In the case where these
multiplications are coincide, A is said to be Arens regular.

Let A be a Banach algebra, A∗ and A∗∗ be the dual and the second dual of A,
respectively. We shall make A∗ into a Banach A-module under the module operations
given by:

⟨ f · a, b⟩ = ⟨ f , ab⟩, ⟨a · f , b⟩ = ⟨ f , ba⟩.

A subspace X of A∗ is called left (resp. right) invariant if A·X ⊆ X (resp. X ·A ⊆ X).
A subspace X is called invariant, if it is both left and right invariant.

Let X be an invariant subspace of A∗, m ∈ X∗ and f ∈ X. We define, m□ f and
f♢m so that, for every a ∈ A ⟨m□ f , a⟩ = ⟨m, f□a⟩ and, ⟨a, f♢m⟩ = ⟨a♢ f ,m⟩. Then
X is called left (resp. right) introverted, if X∗□X ⊆ X (resp. X♢X∗ ⊆ X); X is called
introverted if it is both left and right introverted.

If X is left (resp. right) introverted, then (X∗,□) (resp. (X∗, ♢)) is a Banach algebra
under the product m□n (resp. m♢n), in which, m□n and m♢n are defined so that,
⟨m□n, f ⟩ = ⟨m, n□ f ⟩, and ⟨ f ,m♢n⟩ = ⟨ f♢m, n⟩, for all f ∈ X. The products ♢ and
□ are called the first and the second Arens (type) products on X∗, respectively. An
introverted subspace X of A∗ is called Arens (type) regular if m□n = m♢n for every
m, n ∈ X.
∗ speaker

Archive of SID

www.SID.ir

http://www.sid.ir


2 A.A. KhademMaboudi

For a Banach algebra A it is obvious that A∗ is introverted. In this case □ and ♢
are the so-called (first and second) Arens products on A∗∗, which makes A∗∗ into a
Banach algebras under each of these products. A less trivial example of a left (resp.
right) introverted subspace of A∗ is A∗□A (resp. A♢A∗), in the case where A enjoys a
bounded approximate identity; [2].

If X is left introverted, then one may show that for every n ∈ X∗ the mapping
m 7→ m□n is w∗ − w∗ continuous, but m 7→ n□m is not continuous in general, unless n
is in A. Whence the first topological center Z1(X∗) of X∗ is defined so that,

Z1(X∗) = {n ∈ X∗; m 7→ n□misw∗ − w∗ − continuous}.

If X right introverted, the second topological center Z2(X∗) of X∗ is defined so that,

Z2(X∗) = {n ∈ A∗∗; m 7→ m♢nis w∗ − w∗ − continuous}.

Trivially, A ⊆ Z1(X∗) ∩ Z2(X∗); and also Z1(X∗) and Z2(∗) are closed subalgebras
of (X∗,□) and (X∗, ♢), respectively. We use the notations Z1 and Z2 for Z1(A∗∗) and
Z2(A∗∗), respectively.

For the group algebra A = L1(G), in which G is a locally compact topological
group, it is known that Z1 = Z2 = L1(G); [4]. Note that in this case A∗□A = LUC(G)
and A♢A∗ = RUC(G). For A = K(c0), the operator algebra of all compact linear
operators on the sequence space c0, it has been shown that Z1 , Z2; [5].

2. The results

We start with the following elementary fact on the introversion ptoprty of invariant
subspaces.

Proposition 2.1. Every w∗−closed invariant subspace of A∗ is introverted.

A functional f ∈ A∗ is called weakly almost periodic if f□A1 is weakly relatively
compact in A∗. The set of all weakly compact elements of A∗ will denote by wap(A). It
is easy to verify that wap(A) is a closed subspace of A∗. The following result describes
introversion of X in terms of the inclusion X ⊆ wap(A).

Theorem 2.2. For every norm closed translation invariant subspace X of A∗, the
following are equivalent.

(i) X ⊆ wap(A).
(ii) X is left introverted and Z1(X∗) = X∗.
(iii) X is right introverted and Z2(X∗) = X∗.

As an immediate consequence we have the next corollary.

Corollary 2.3. Every norm closed invariant subspace X of wap(A) is introverted, and
Arens (type) regular, i.e. Z1(X∗) = X∗ = Z2(X∗). In particular wap(A) is introverted.

The following result is an extension of [5, Corollay 3.2].
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Theorem 2.4. Let A be a Banach algebra and X be a left introverted subspace of A∗

then
(i) X♢Z1(X∗) ⊆ X.
(ii) If X□A = X, then A♢Z1(X∗) ⊆ Z1.
(iii) if X□A = A and A.A = A, then A♢Z1(X∗) = A♢Z1.

The next result extends [5, Theorem 3.6]) to a general left introverted subspace of
A∗.

Theorem 2.5. Let X be a norm closed left introverted subspace of A∗ such that
X□A = X, and A.A = A. Then the following statements are equivalents.

(i)X ⊆ wap(A).
(ii)A♢X∗ ⊆ Z1.
(iii) A♢X∗ ⊆ A♢Z1(X∗).
(iv) Z1(X∗) = X∗.
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